Overcoming the BSTFA: Study on Trimethylsilylation Derivatization Procedures for Chemical Weapons Convention-Related Alcohols in Field Analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26310%2F23%3APU149696" target="_blank" >RIV/00216305:26310/23:PU149696 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60162694:G45__/25:00560640
Výsledek na webu
<a href="https://www.tandfonline.com/doi/full/10.1080/00032719.2023.2281587?scroll=top&needAccess=true" target="_blank" >https://www.tandfonline.com/doi/full/10.1080/00032719.2023.2281587?scroll=top&needAccess=true</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/00032719.2023.2281587" target="_blank" >10.1080/00032719.2023.2281587</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Overcoming the BSTFA: Study on Trimethylsilylation Derivatization Procedures for Chemical Weapons Convention-Related Alcohols in Field Analysis
Popis výsledku v původním jazyce
After the use of chemical weapons, there is a gradual spontaneous decomposition of chemical warfare agents (CWAs), and only degradation products can be present at the time of sample collection. Depending on the type of parent compound, these are most often acids, alcohols, or thiols. This article deals with the development and optimization of methods for the trimethylsilylation of controlled alcohols that outperforms the currently widely used method with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) prior to gas chromatographic identification. Thiodiglycol (TDG) was chosen as a model alcohol for the development and optimization of methods. Nine trimethylsilylating agents were tested as derivatization agents. For each reagent, the method was optimized in terms of reaction medium (seven tested solvents), reaction time, and temperature. The temporal stability of the resulting derivatives and the effect of the addition of the reaction catalyst were also monitored. Subsequently, optimal methods were applied in the derivatization of N-ethyldiethanolamine, N-methyldiethanolamine, triethanolamine, 2-diisopropylaminoethanol (DIAE), and 3-quinuclidinol. The developed methods were compared in all monitored properties with the standard BSTFA-method (in acetonitrile for 30 min at 60 °C). From the developed methods, three were selected that showed similar or better sensitivity parameters than BSTFA, and at the same time were less demanding to perform. Trimethylsilylation via trimethylsilyl cyanide (TMSCN) appears to be the most successful method. In conclusion, the selected methods were applied in the analysis of contaminated environmental and urban samples – sand, acrylic paint, asphalt-aluminum paint, and concrete. The samples were measured on both a benchtop and a field gas chromatograph.
Název v anglickém jazyce
Overcoming the BSTFA: Study on Trimethylsilylation Derivatization Procedures for Chemical Weapons Convention-Related Alcohols in Field Analysis
Popis výsledku anglicky
After the use of chemical weapons, there is a gradual spontaneous decomposition of chemical warfare agents (CWAs), and only degradation products can be present at the time of sample collection. Depending on the type of parent compound, these are most often acids, alcohols, or thiols. This article deals with the development and optimization of methods for the trimethylsilylation of controlled alcohols that outperforms the currently widely used method with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) prior to gas chromatographic identification. Thiodiglycol (TDG) was chosen as a model alcohol for the development and optimization of methods. Nine trimethylsilylating agents were tested as derivatization agents. For each reagent, the method was optimized in terms of reaction medium (seven tested solvents), reaction time, and temperature. The temporal stability of the resulting derivatives and the effect of the addition of the reaction catalyst were also monitored. Subsequently, optimal methods were applied in the derivatization of N-ethyldiethanolamine, N-methyldiethanolamine, triethanolamine, 2-diisopropylaminoethanol (DIAE), and 3-quinuclidinol. The developed methods were compared in all monitored properties with the standard BSTFA-method (in acetonitrile for 30 min at 60 °C). From the developed methods, three were selected that showed similar or better sensitivity parameters than BSTFA, and at the same time were less demanding to perform. Trimethylsilylation via trimethylsilyl cyanide (TMSCN) appears to be the most successful method. In conclusion, the selected methods were applied in the analysis of contaminated environmental and urban samples – sand, acrylic paint, asphalt-aluminum paint, and concrete. The samples were measured on both a benchtop and a field gas chromatograph.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10406 - Analytical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ANALYTICAL LETTERS
ISSN
0003-2719
e-ISSN
1532-236X
Svazek periodika
august
Číslo periodika v rámci svazku
2023
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
1-17
Kód UT WoS článku
001109846300001
EID výsledku v databázi Scopus
2-s2.0-85178240167