Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Investment Decision Support Based on Interval Type-2 Fuzzy Expert System

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26510%2F21%3APU140764" target="_blank" >RIV/00216305:26510/21:PU140764 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://inzeko.ktu.lt/index.php/EE/article/view/24884" target="_blank" >https://inzeko.ktu.lt/index.php/EE/article/view/24884</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5755/j01.ee.32.2.24884" target="_blank" >10.5755/j01.ee.32.2.24884</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Investment Decision Support Based on Interval Type-2 Fuzzy Expert System

  • Popis výsledku v původním jazyce

    The decision-making process on investing in financial markets is a very complex and difficult task, mainly due to the chaotic behavior and high uncertainty in the development of the prices of investment instruments. For this reason, financial markets are increasingly using means of artificial intelligence, namely fuzzy logic, which is able to capture the nonlinear behavior.Fuzzy logic provides a way to draw definitive conclusions from vague, ambiguous, or inaccurate information.However, there are some drawbacks associated with type-1 fuzzy logic, so the type-2 fuzzy logic comes forward, which can work with greater uncertainty. Type-2 fuzzy logic works with a new third dimension fuzzy set that provides additional degrees of freedom and allows to model and process numerical and linguistic uncertainties directly. The paper applies type-2 fuzzy logic to the stock market with the aim to create a simple and understandable model for deciding on investing in investment instruments, which is important for investors in this area. The proposed type-2 fuzzy model uses return, risk, dividend and total expense ratio of ETF as input variables. The created system is able to generate aggregated models from a certain number of language rules, which allows the investor to understand the created financial model. Using type-2 fuzzy logic can lead to more realistic and accurate results than type-1 fuzzy logic.

  • Název v anglickém jazyce

    Investment Decision Support Based on Interval Type-2 Fuzzy Expert System

  • Popis výsledku anglicky

    The decision-making process on investing in financial markets is a very complex and difficult task, mainly due to the chaotic behavior and high uncertainty in the development of the prices of investment instruments. For this reason, financial markets are increasingly using means of artificial intelligence, namely fuzzy logic, which is able to capture the nonlinear behavior.Fuzzy logic provides a way to draw definitive conclusions from vague, ambiguous, or inaccurate information.However, there are some drawbacks associated with type-1 fuzzy logic, so the type-2 fuzzy logic comes forward, which can work with greater uncertainty. Type-2 fuzzy logic works with a new third dimension fuzzy set that provides additional degrees of freedom and allows to model and process numerical and linguistic uncertainties directly. The paper applies type-2 fuzzy logic to the stock market with the aim to create a simple and understandable model for deciding on investing in investment instruments, which is important for investors in this area. The proposed type-2 fuzzy model uses return, risk, dividend and total expense ratio of ETF as input variables. The created system is able to generate aggregated models from a certain number of language rules, which allows the investor to understand the created financial model. Using type-2 fuzzy logic can lead to more realistic and accurate results than type-1 fuzzy logic.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    50204 - Business and management

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Engineering Economics

  • ISSN

    1392-2785

  • e-ISSN

    2029-5839

  • Svazek periodika

    32

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    LT - Litevská republika

  • Počet stran výsledku

    12

  • Strana od-do

    118-129

  • Kód UT WoS článku

    000646046800003

  • EID výsledku v databázi Scopus

    2-s2.0-85105587892