A Bibliometric Analysis of Artificial Intelligence Technique in Financial Market
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26510%2F21%3APU141585" target="_blank" >RIV/00216305:26510/21:PU141585 - isvavai.cz</a>
Výsledek na webu
<a href="https://editorial.upce.cz/1804-8048/29/3/1268" target="_blank" >https://editorial.upce.cz/1804-8048/29/3/1268</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.46585/sp29031268" target="_blank" >10.46585/sp29031268</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Bibliometric Analysis of Artificial Intelligence Technique in Financial Market
Popis výsledku v původním jazyce
This article aims to explore the main areas of research, development trends and provide a systematic overview of publications in the field of artificial intelligence in financial markets. The bibliometric tool VOSViewer is used in this paper. We analyzed 353 articles and contributions obtained from the database of Web of Science, and summarized our findings as follows: artificial intelligence is becoming increasingly widespread in the field of finance and interdisciplinary interconnection; artificial intelligence tools such as neural networks and fuzzy logic are most often used to predict the development of financial time series, or to create decision models; the most important cited authors in this field are Markowitz and Lebaron. Expert System with Application is the cradle of a significant part of fundamental research in the field of artificial intelligence. By using effective bibliometric methods, we provide comprehensive analysis and in-depth insight into the subject area of research, which allows individuals and especially new beginners interested in this area to obtain valuable information and possible direction of future research. The study is recommended to focus on hybrid models prediction of individual sectors of the financial markets, which are present in the current research on the rise.
Název v anglickém jazyce
A Bibliometric Analysis of Artificial Intelligence Technique in Financial Market
Popis výsledku anglicky
This article aims to explore the main areas of research, development trends and provide a systematic overview of publications in the field of artificial intelligence in financial markets. The bibliometric tool VOSViewer is used in this paper. We analyzed 353 articles and contributions obtained from the database of Web of Science, and summarized our findings as follows: artificial intelligence is becoming increasingly widespread in the field of finance and interdisciplinary interconnection; artificial intelligence tools such as neural networks and fuzzy logic are most often used to predict the development of financial time series, or to create decision models; the most important cited authors in this field are Markowitz and Lebaron. Expert System with Application is the cradle of a significant part of fundamental research in the field of artificial intelligence. By using effective bibliometric methods, we provide comprehensive analysis and in-depth insight into the subject area of research, which allows individuals and especially new beginners interested in this area to obtain valuable information and possible direction of future research. The study is recommended to focus on hybrid models prediction of individual sectors of the financial markets, which are present in the current research on the rise.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
50206 - Finance
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Scientific Papers of the University of Pardubice, Series D
ISSN
1211-555X
e-ISSN
1804-8048
Svazek periodika
29
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
10
Strana od-do
1-10
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85115781648