Two-point boundary value problems for 4th order ordinary differential equations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26510%2F24%3APU152069" target="_blank" >RIV/00216305:26510/24:PU152069 - isvavai.cz</a>
Výsledek na webu
<a href="http://mat76.mat.uni-miskolc.hu/mnotes/article/4481" target="_blank" >http://mat76.mat.uni-miskolc.hu/mnotes/article/4481</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18514/MMN.2024.4481" target="_blank" >10.18514/MMN.2024.4481</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Two-point boundary value problems for 4th order ordinary differential equations
Popis výsledku v původním jazyce
The new optimal efficient sufficient conditions are established for solvability and uniqueness of a solution of the linear and nonlinear fourth order ordinary differential equations u ( 4 ) ( t ) = p ( t ) u ( t )+ q ( t ) for t E [ a , b ] , u ( 4 ) ( t ) = p ( t ) u ( t ) + f ( t , u ( t )) for t E [ a , b ] , under the following two -point boundary conditions u ( i ) ( a ) = 0 , u ( i ) ( b ) = 0 ( i = 0 , 1 ) , and u ( i ) ( a ) = 0 ( i = 0 , 1 , 2 ) , u ( b ) = 0 , where p E L ([ a , b ] ; R ) is a nonconstant sign function and f E K ([ a , b ] x R; R ) .
Název v anglickém jazyce
Two-point boundary value problems for 4th order ordinary differential equations
Popis výsledku anglicky
The new optimal efficient sufficient conditions are established for solvability and uniqueness of a solution of the linear and nonlinear fourth order ordinary differential equations u ( 4 ) ( t ) = p ( t ) u ( t )+ q ( t ) for t E [ a , b ] , u ( 4 ) ( t ) = p ( t ) u ( t ) + f ( t , u ( t )) for t E [ a , b ] , under the following two -point boundary conditions u ( i ) ( a ) = 0 , u ( i ) ( b ) = 0 ( i = 0 , 1 ) , and u ( i ) ( a ) = 0 ( i = 0 , 1 , 2 ) , u ( b ) = 0 , where p E L ([ a , b ] ; R ) is a nonconstant sign function and f E K ([ a , b ] x R; R ) .
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Miskolc Mathematical Notes (electronic version)
ISSN
1787-2405
e-ISSN
1787-2413
Svazek periodika
25
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
HU - Maďarsko
Počet stran výsledku
11
Strana od-do
339-409
Kód UT WoS článku
001240590000029
EID výsledku v databázi Scopus
—