Development of a new servo-hydraulic earthquake actuator for the 400 g-ton centrifuge at the university of colorado Boulder
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26610%2F22%3APU145873" target="_blank" >RIV/00216305:26610/22:PU145873 - isvavai.cz</a>
Výsledek na webu
<a href="https://sigongji.icpmg2022.org/wp/Home.asp" target="_blank" >https://sigongji.icpmg2022.org/wp/Home.asp</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Development of a new servo-hydraulic earthquake actuator for the 400 g-ton centrifuge at the university of colorado Boulder
Popis výsledku v původním jazyce
Dynamic centrifuge modelling enables cost effective studies of the complex seismic response of soil and soil-structure systems. However, centrifuge scaling laws necessitate an increase between the full scale and applied model accelerations, and shaking frequencies, by the model scale factor. This can translate to challenging mechanical, hydraulic, and control demands on the shake table system. In this paper, we detail the development of a new 1-DOF horizontal servo-hydraulic earthquake actuator on the 400 g-ton centrifuge at the University of Colorado Boulder. The mechanical and servo-hydraulic systems are discussed, highlighting both general design aspects and considerations specific to the Boulder centrifuge with the goal of maximizing payload, acceleration, and frequency range capabilities under increased gravity. The two-level control system is described; displacement, velocity and oil pressure feedback are used for closed loop control of the table position whilst acceleration feedback is used to
Název v anglickém jazyce
Development of a new servo-hydraulic earthquake actuator for the 400 g-ton centrifuge at the university of colorado Boulder
Popis výsledku anglicky
Dynamic centrifuge modelling enables cost effective studies of the complex seismic response of soil and soil-structure systems. However, centrifuge scaling laws necessitate an increase between the full scale and applied model accelerations, and shaking frequencies, by the model scale factor. This can translate to challenging mechanical, hydraulic, and control demands on the shake table system. In this paper, we detail the development of a new 1-DOF horizontal servo-hydraulic earthquake actuator on the 400 g-ton centrifuge at the University of Colorado Boulder. The mechanical and servo-hydraulic systems are discussed, highlighting both general design aspects and considerations specific to the Boulder centrifuge with the goal of maximizing payload, acceleration, and frequency range capabilities under increased gravity. The two-level control system is described; displacement, velocity and oil pressure feedback are used for closed loop control of the table position whilst acceleration feedback is used to
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů