Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Experimentally investigating the influence of changing payload stiffness on outer loop iterative learning control strategies with shaking table tests

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26610%2F23%3APU148170" target="_blank" >RIV/00216305:26610/23:PU148170 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://journals.sagepub.com/doi/abs/10.1177/10775463231173018" target="_blank" >https://journals.sagepub.com/doi/abs/10.1177/10775463231173018</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1177/10775463231173018" target="_blank" >10.1177/10775463231173018</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Experimentally investigating the influence of changing payload stiffness on outer loop iterative learning control strategies with shaking table tests

  • Popis výsledku v původním jazyce

    Shaking tables are widely used across numerous engineering research and industrial sectors, including mechanical (e.g. automotive and aerospace testing), electrical (e.g. instrumentation testing) and civil (e.g. structural and geotechnical testing) engineering. It is commonly required to replicate the shake table motions accurately and precisely. Iterative learning control algorithms can be used to complement traditional proportional–integral–differential feedback control algorithms to optimize drive signals using a test payload prior to the real experiment. Historically, the design of these test payloads has focused on matching the mass of the actual payload and neglected its dynamic response. In this study, experimental results from shake table tests using multiple geotechnical containers with dry and saturated beds that exhibit a range of stiffnesses and material damping when shaken are presented. Errors between the demanded and achieved motions are explored and compared to the changing secant stiffness abstracted from the dynamic shear stress–strain loops of the payload. A clear trend emerges that demonstrates increased errors as the payload stiffness deviates from the constant stiffness test payload originally used with the open loop iterative learning control, and further the errors are not necessarily bounded by test payloads significantly softer or stiffer than the actual specimen. The findings support that in cases where repeatable, accurate and precise shake table motions are required for payloads that exhibit a complex material response that is not readily modelled mathematically, it may be necessary to reproduce the specimen’s overall dynamic response during the iterative learning control process.

  • Název v anglickém jazyce

    Experimentally investigating the influence of changing payload stiffness on outer loop iterative learning control strategies with shaking table tests

  • Popis výsledku anglicky

    Shaking tables are widely used across numerous engineering research and industrial sectors, including mechanical (e.g. automotive and aerospace testing), electrical (e.g. instrumentation testing) and civil (e.g. structural and geotechnical testing) engineering. It is commonly required to replicate the shake table motions accurately and precisely. Iterative learning control algorithms can be used to complement traditional proportional–integral–differential feedback control algorithms to optimize drive signals using a test payload prior to the real experiment. Historically, the design of these test payloads has focused on matching the mass of the actual payload and neglected its dynamic response. In this study, experimental results from shake table tests using multiple geotechnical containers with dry and saturated beds that exhibit a range of stiffnesses and material damping when shaken are presented. Errors between the demanded and achieved motions are explored and compared to the changing secant stiffness abstracted from the dynamic shear stress–strain loops of the payload. A clear trend emerges that demonstrates increased errors as the payload stiffness deviates from the constant stiffness test payload originally used with the open loop iterative learning control, and further the errors are not necessarily bounded by test payloads significantly softer or stiffer than the actual specimen. The findings support that in cases where repeatable, accurate and precise shake table motions are required for payloads that exhibit a complex material response that is not readily modelled mathematically, it may be necessary to reproduce the specimen’s overall dynamic response during the iterative learning control process.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20302 - Applied mechanics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    JOURNAL OF VIBRATION AND CONTROL

  • ISSN

    1077-5463

  • e-ISSN

    1741-2986

  • Svazek periodika

    9.5.2023

  • Číslo periodika v rámci svazku

    9.5.2023

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    14

  • Strana od-do

    1-14

  • Kód UT WoS článku

    107754632311730

  • EID výsledku v databázi Scopus

    2-s2.0-85159124082