Toward Site-Specific Dopant Contrast in Scanning Electron Microscopy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F14%3APU109853" target="_blank" >RIV/00216305:26620/14:PU109853 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1017/S1431927614000968" target="_blank" >http://dx.doi.org/10.1017/S1431927614000968</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S1431927614000968" target="_blank" >10.1017/S1431927614000968</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Toward Site-Specific Dopant Contrast in Scanning Electron Microscopy
Popis výsledku v původním jazyce
Since semiconductor devices are being scaled down to dimensions of several nanometers there is a growing need for techniques capable of quantitative analysis of dopant concentrations at the nanometer scale in all three dimensions. Imaging dopant contrast by scanning electron microscopy (SEM) is a very promising method, but many unresolved issues hinder its routine application for device analysis, especially in cases of buried layers where site-specific sample preparation is challenging. Here, we report on optimization of site-specific sample preparation by the focused Ga ion beam (FIB) technique that provides improved dopant contrast in SEM. Similar to FIB lamella preparation for transmission electron microscopy, a polishing sequence with decreasing ion energy is necessary to minimize the thickness of the electronically dead layer. We have achieved contrast values comparable to the cleaved sample, being able to detect dopant concentrations down to 1x10^16 cm^-3. A theoretical model shows that the electronically dead layer corresponds to an amorphized Si layer formed during ion beam polishing. Our results also demonstrate that contamination issues are significantly suppressed for FIB-treated samples compared with cleaved ones.
Název v anglickém jazyce
Toward Site-Specific Dopant Contrast in Scanning Electron Microscopy
Popis výsledku anglicky
Since semiconductor devices are being scaled down to dimensions of several nanometers there is a growing need for techniques capable of quantitative analysis of dopant concentrations at the nanometer scale in all three dimensions. Imaging dopant contrast by scanning electron microscopy (SEM) is a very promising method, but many unresolved issues hinder its routine application for device analysis, especially in cases of buried layers where site-specific sample preparation is challenging. Here, we report on optimization of site-specific sample preparation by the focused Ga ion beam (FIB) technique that provides improved dopant contrast in SEM. Similar to FIB lamella preparation for transmission electron microscopy, a polishing sequence with decreasing ion energy is necessary to minimize the thickness of the electronically dead layer. We have achieved contrast values comparable to the cleaved sample, being able to detect dopant concentrations down to 1x10^16 cm^-3. A theoretical model shows that the electronically dead layer corresponds to an amorphized Si layer formed during ion beam polishing. Our results also demonstrate that contamination issues are significantly suppressed for FIB-treated samples compared with cleaved ones.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
MICROSCOPY AND MICROANALYSIS
ISSN
1431-9276
e-ISSN
1435-8115
Svazek periodika
20
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
6
Strana od-do
1312-1317
Kód UT WoS článku
000340259800038
EID výsledku v databázi Scopus
—