Ważewski type theorem for non-autonomous systems of equations with a disconnected set of egress points
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F15%3APU114197" target="_blank" >RIV/00216305:26620/15:PU114197 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S009630031500644X" target="_blank" >http://www.sciencedirect.com/science/article/pii/S009630031500644X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.amc.2015.05.027" target="_blank" >10.1016/j.amc.2015.05.027</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Ważewski type theorem for non-autonomous systems of equations with a disconnected set of egress points
Popis výsledku v původním jazyce
In this paper we study an asymptotic behaviour of solutions of nonlinear dynamic systems on time scales of the form $$y^{Delta}(t)=f(t,y(t)),$$ where $fcolonmathbb{T}timesmathbb{R}^nrightarrowmathbb{R}^n$, and $mathbb{T}$ is a time scale. For a given set $Omegasubsetmathbb{T}timesR^{n}$, we formulate conditions for function $f$ which guarantee that at least one solution $y$ of the above system stays in $Omega$. Unlike previous papers the set $Omega$ is considered in more general form, i.e., the time section $Omega_t$ is an arbitrary closed bounded set homeomorphic to the disk (for every $tinmathbb{T}$) and the boundary $partial_mathbb{T}Omega$ does not contain only egress points. Thanks to this, we can investigate a substantially wider range of equations with various types of bounded solutions. A relevant example is considered. The results are new also for non-autonomous systems of difference equations and the systems of impulsive differential equations.
Název v anglickém jazyce
Ważewski type theorem for non-autonomous systems of equations with a disconnected set of egress points
Popis výsledku anglicky
In this paper we study an asymptotic behaviour of solutions of nonlinear dynamic systems on time scales of the form $$y^{Delta}(t)=f(t,y(t)),$$ where $fcolonmathbb{T}timesmathbb{R}^nrightarrowmathbb{R}^n$, and $mathbb{T}$ is a time scale. For a given set $Omegasubsetmathbb{T}timesR^{n}$, we formulate conditions for function $f$ which guarantee that at least one solution $y$ of the above system stays in $Omega$. Unlike previous papers the set $Omega$ is considered in more general form, i.e., the time section $Omega_t$ is an arbitrary closed bounded set homeomorphic to the disk (for every $tinmathbb{T}$) and the boundary $partial_mathbb{T}Omega$ does not contain only egress points. Thanks to this, we can investigate a substantially wider range of equations with various types of bounded solutions. A relevant example is considered. The results are new also for non-autonomous systems of difference equations and the systems of impulsive differential equations.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
APPLIED MATHEMATICS AND COMPUTATION
ISSN
0096-3003
e-ISSN
1873-5649
Svazek periodika
265
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
358-369
Kód UT WoS článku
000358787100031
EID výsledku v databázi Scopus
2-s2.0-84930636383