Exploring Electron Transport and Memristive Switching in Nanoscale Au/WOx/W Multijunctions Based on Anodically Oxidized Al/W Metal Layers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F16%3APU120621" target="_blank" >RIV/00216305:26620/16:PU120621 - isvavai.cz</a>
Výsledek na webu
<a href="http://onlinelibrary.wiley.com/doi/10.1002/admi.201600512/abstract" target="_blank" >http://onlinelibrary.wiley.com/doi/10.1002/admi.201600512/abstract</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/admi.201600512" target="_blank" >10.1002/admi.201600512</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Exploring Electron Transport and Memristive Switching in Nanoscale Au/WOx/W Multijunctions Based on Anodically Oxidized Al/W Metal Layers
Popis výsledku v původním jazyce
An array of semiconducting tungsten-oxide (WOx) nanorods, 100 nm wide and 700 nm long, is synthesized via the porous-anodic-alumina-assisted anodization of tungsten on a substrate and is modified by annealing in air and vacuum. The rods buried in the alumina nanopores are self-anchored to the tungsten layer while their tops are interconnected via gold electrodeposited inside and over the pores. Thus formed metal/semiconductor/metal microdevices are used for studying electron transport within the nanorods and across the multiplied nanoscale Au/WOx and W/WOx interfaces. The dominating effect of a Schottky junction that forms at the Au/WOx interface is justified for the as-anodized and air-annealed nanorods tested at room temperature, which transforms into an ohmic contact at elevated temperature, whereas the bottom W/WOx interface turns out to be Schottky-like and govern the electron transport, giving a higher barrier and a set of pronounced diode-like characteristics in the as-anodized nanoarrays. The amorphous nanorods reveal bipolar resistive switching with a gradual reset due to the field-driven movement of oxygen vacancies and induced modifications of the Au/WOx Schottky interface. The unique electrical and interfacial properties of the nanoscale Au/WOx/W multijunctions form a basis for their application in emerging resistive random access memories or 3D gas-sensing nanodevices.
Název v anglickém jazyce
Exploring Electron Transport and Memristive Switching in Nanoscale Au/WOx/W Multijunctions Based on Anodically Oxidized Al/W Metal Layers
Popis výsledku anglicky
An array of semiconducting tungsten-oxide (WOx) nanorods, 100 nm wide and 700 nm long, is synthesized via the porous-anodic-alumina-assisted anodization of tungsten on a substrate and is modified by annealing in air and vacuum. The rods buried in the alumina nanopores are self-anchored to the tungsten layer while their tops are interconnected via gold electrodeposited inside and over the pores. Thus formed metal/semiconductor/metal microdevices are used for studying electron transport within the nanorods and across the multiplied nanoscale Au/WOx and W/WOx interfaces. The dominating effect of a Schottky junction that forms at the Au/WOx interface is justified for the as-anodized and air-annealed nanorods tested at room temperature, which transforms into an ohmic contact at elevated temperature, whereas the bottom W/WOx interface turns out to be Schottky-like and govern the electron transport, giving a higher barrier and a set of pronounced diode-like characteristics in the as-anodized nanoarrays. The amorphous nanorods reveal bipolar resistive switching with a gradual reset due to the field-driven movement of oxygen vacancies and induced modifications of the Au/WOx Schottky interface. The unique electrical and interfacial properties of the nanoscale Au/WOx/W multijunctions form a basis for their application in emerging resistive random access memories or 3D gas-sensing nanodevices.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advanced Materials Interfaces
ISSN
2196-7350
e-ISSN
—
Svazek periodika
3
Číslo periodika v rámci svazku
19
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
12
Strana od-do
1600512-1600524
Kód UT WoS článku
000386058100023
EID výsledku v databázi Scopus
2-s2.0-84983611299