Coherence-encoded synthetic aperture for super-resolution quantitative phase imaging
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F22%3APU145060" target="_blank" >RIV/00216305:26620/22:PU145060 - isvavai.cz</a>
Výsledek na webu
<a href="https://aip.scitation.org/doi/10.1063/5.0081134" target="_blank" >https://aip.scitation.org/doi/10.1063/5.0081134</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0081134" target="_blank" >10.1063/5.0081134</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Coherence-encoded synthetic aperture for super-resolution quantitative phase imaging
Popis výsledku v původním jazyce
Quantitative phase imaging (QPI) has quickly established its role in identifying rare events and screening in biomedicine or automated image data analysis using artificial intelligence. These and many other applications share the requirement for extensive high-quality datasets, which is challenging to meet because the invariance of the space-bandwidth product (SBP) fundamentally limits the microscope system throughput. Here, we present a method to overcome the SBP limit by achieving QPI super-resolution using a synthetic aperture approach in a holographic microscope with a partially coherent broad source illumination. We exploit intrinsic coherence-gating properties of the partially coherent light combined with the oblique illumination provided by the diffraction on a simple phase grating placed in proximity of the specimen. We sequentially coherence gate the light scattered into each grating's diffraction order, and we use the acquired images to synthesize QPI with significantly increased spatial frequency bandwidth. The resolution of QPI is increased substantially beyond Abbe's diffraction limit while a large field of view of low numerical aperture objectives is kept. This paper presents a thorough theoretical treatment of the coherence-gated imaging process supplemented by a detailed measurement methodology. The capability of the proposed method is demonstrated by imaging a phase resolution target and biological specimens. We envision our work providing an easily implementable super-resolution QPI method particularly suitable for high-throughput biomedical applications.
Název v anglickém jazyce
Coherence-encoded synthetic aperture for super-resolution quantitative phase imaging
Popis výsledku anglicky
Quantitative phase imaging (QPI) has quickly established its role in identifying rare events and screening in biomedicine or automated image data analysis using artificial intelligence. These and many other applications share the requirement for extensive high-quality datasets, which is challenging to meet because the invariance of the space-bandwidth product (SBP) fundamentally limits the microscope system throughput. Here, we present a method to overcome the SBP limit by achieving QPI super-resolution using a synthetic aperture approach in a holographic microscope with a partially coherent broad source illumination. We exploit intrinsic coherence-gating properties of the partially coherent light combined with the oblique illumination provided by the diffraction on a simple phase grating placed in proximity of the specimen. We sequentially coherence gate the light scattered into each grating's diffraction order, and we use the acquired images to synthesize QPI with significantly increased spatial frequency bandwidth. The resolution of QPI is increased substantially beyond Abbe's diffraction limit while a large field of view of low numerical aperture objectives is kept. This paper presents a thorough theoretical treatment of the coherence-gated imaging process supplemented by a detailed measurement methodology. The capability of the proposed method is demonstrated by imaging a phase resolution target and biological specimens. We envision our work providing an easily implementable super-resolution QPI method particularly suitable for high-throughput biomedical applications.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
APL Photonics
ISSN
2378-0967
e-ISSN
—
Svazek periodika
7
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
1-10
Kód UT WoS článku
000790858700001
EID výsledku v databázi Scopus
2-s2.0-85128968044