Artificial Neural Networks for Classification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F22%3APU145851" target="_blank" >RIV/00216305:26620/22:PU145851 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.wiley.com/en-it/Chemometrics+and+Numerical+Methods+in+LIBS-p-9781119759584" target="_blank" >https://www.wiley.com/en-it/Chemometrics+and+Numerical+Methods+in+LIBS-p-9781119759584</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/9781119759614.ch9" target="_blank" >10.1002/9781119759614.ch9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Artificial Neural Networks for Classification
Popis výsledku v původním jazyce
Laser‐induced plasma emission spectra contain vast amounts of information. Yet, the discovery of appropriate patterns in laser‐induced breakdown spectra is paramount to reliably performing both quantitative and qualitative analysis. This chapter provides a brief introduction of artificial neural network (ANN) classification models, which have recently become a fundamental part of most pattern recognition toolboxes. The working principles of ANNs are discussed along with the most frequently used architecture types. Special attention is given to the training process of ANNs with the aim of aiding the reader's troubleshooting capabilities. Moreover, some of the potential perils of ANN models are presented. Namely, the risk of overtraining is addressed extensively while providing several potential ailments. Lastly, a comprehensive overview of the applications of ANNs for the classification of LIBS spectra is provided and a few exemplary use‐cases of ANN classifiers are discussed in detail.
Název v anglickém jazyce
Artificial Neural Networks for Classification
Popis výsledku anglicky
Laser‐induced plasma emission spectra contain vast amounts of information. Yet, the discovery of appropriate patterns in laser‐induced breakdown spectra is paramount to reliably performing both quantitative and qualitative analysis. This chapter provides a brief introduction of artificial neural network (ANN) classification models, which have recently become a fundamental part of most pattern recognition toolboxes. The working principles of ANNs are discussed along with the most frequently used architecture types. Special attention is given to the training process of ANNs with the aim of aiding the reader's troubleshooting capabilities. Moreover, some of the potential perils of ANN models are presented. Namely, the risk of overtraining is addressed extensively while providing several potential ailments. Lastly, a comprehensive overview of the applications of ANNs for the classification of LIBS spectra is provided and a few exemplary use‐cases of ANN classifiers are discussed in detail.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10406 - Analytical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/EF19_073%2F0016948" target="_blank" >EF19_073/0016948: Kvalitní interní granty VUT</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Chemometrics and Numerical Methods in LIBS
ISBN
978-1-119-75958-4
Počet stran výsledku
28
Strana od-do
213-240
Počet stran knihy
384
Název nakladatele
Neuveden
Místo vydání
Neuveden
Kód UT WoS kapitoly
—