Online neural network application for compensation of the VSI voltage nonlinearities
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F23%3APU149634" target="_blank" >RIV/00216305:26620/23:PU149634 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10312305" target="_blank" >https://ieeexplore.ieee.org/document/10312305</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IECON51785.2023.10312305" target="_blank" >10.1109/IECON51785.2023.10312305</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Online neural network application for compensation of the VSI voltage nonlinearities
Popis výsledku v původním jazyce
The paper aims to solve the distortion problem of the inverter output voltages that cause harmonic deformation of the phase currents and ripple of dq- currents of the three-phase permanent magnet synchronous motor (PMSM). The inverter non-linearities adversely affect the effectiveness of the PMSM control algorithm. The compensation strategy is based on the neural network and knowledge of the three-phase PMSM model structure and its parameters. The input data for the neural network consist of the normed values and detected polarities of the phase currents and rotor position information. As a result, the proposed artificial neural network (ANN) can extract non-linear functions from the measured data to compensate for the VSI output voltages. The ANN is designed to learn online while the PMSM is running. The back-propagation algorithm is used for neural network learning. The proposed stratégy was implemented in an AURIX TC397 microcontroller and validated by experiments on a real PMSM. The presented results demonstrate the effectiveness of the proposed solution.
Název v anglickém jazyce
Online neural network application for compensation of the VSI voltage nonlinearities
Popis výsledku anglicky
The paper aims to solve the distortion problem of the inverter output voltages that cause harmonic deformation of the phase currents and ripple of dq- currents of the three-phase permanent magnet synchronous motor (PMSM). The inverter non-linearities adversely affect the effectiveness of the PMSM control algorithm. The compensation strategy is based on the neural network and knowledge of the three-phase PMSM model structure and its parameters. The input data for the neural network consist of the normed values and detected polarities of the phase currents and rotor position information. As a result, the proposed artificial neural network (ANN) can extract non-linear functions from the measured data to compensate for the VSI output voltages. The ANN is designed to learn online while the PMSM is running. The back-propagation algorithm is used for neural network learning. The proposed stratégy was implemented in an AURIX TC397 microcontroller and validated by experiments on a real PMSM. The presented results demonstrate the effectiveness of the proposed solution.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
IECON 2023- 49th Annual Conference of the IEEE Industrial Electronics Society
ISBN
979-8-3503-3182-0
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
1-6
Název nakladatele
IEEE
Místo vydání
Singapur
Místo konání akce
Singapore
Datum konání akce
16. 10. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—