Design and Application of Neural Network for Compensation of VSI Output Voltage Nonlinearities
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F24%3APU152437" target="_blank" >RIV/00216305:26620/24:PU152437 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10905982/authors#authors" target="_blank" >https://ieeexplore.ieee.org/document/10905982/authors#authors</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IECON55916.2024.10905982" target="_blank" >10.1109/IECON55916.2024.10905982</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Design and Application of Neural Network for Compensation of VSI Output Voltage Nonlinearities
Popis výsledku v původním jazyce
Voltage source inverters (VSI) with modern power-switching elements are often used to control industrial AC motors. However, the non-linearities of the inverters, such as dead time, turn-on and turn-off switching delay times and voltage drops, are often behind the distortion of the phase currents of the controlled motor. The current distortions can be suppressed by appropriately calculated non-linear functions, which represent the compensation voltages and are consequently added to the control values of the current regulators in the field-oriented control (FOC) algorithm. An artificial neural network (ANN) was designed to identify the non-linear functions of the compensation voltages, which is presented in this paper. Only signals available in the FOC algorithm are used as ANN inputs. The learning process of the neural network takes place online during the running of the motor control algorithm. The learning pattern is generated in each step of the control algorithm from the control errors of the current controllers and the previous ANN outputs. It is not necessary to know the VSI parameters when learning the neural network. The proposed ANN and back-propagation learning algorithm were implemented on one core of the AURIX microcontroller TC397. The proposed strategy was validated through experiments on a real permanent magnet synchronous motor (PMSM), and experimental results prove the effectiveness of the ANN.
Název v anglickém jazyce
Design and Application of Neural Network for Compensation of VSI Output Voltage Nonlinearities
Popis výsledku anglicky
Voltage source inverters (VSI) with modern power-switching elements are often used to control industrial AC motors. However, the non-linearities of the inverters, such as dead time, turn-on and turn-off switching delay times and voltage drops, are often behind the distortion of the phase currents of the controlled motor. The current distortions can be suppressed by appropriately calculated non-linear functions, which represent the compensation voltages and are consequently added to the control values of the current regulators in the field-oriented control (FOC) algorithm. An artificial neural network (ANN) was designed to identify the non-linear functions of the compensation voltages, which is presented in this paper. Only signals available in the FOC algorithm are used as ANN inputs. The learning process of the neural network takes place online during the running of the motor control algorithm. The learning pattern is generated in each step of the control algorithm from the control errors of the current controllers and the previous ANN outputs. It is not necessary to know the VSI parameters when learning the neural network. The proposed ANN and back-propagation learning algorithm were implemented on one core of the AURIX microcontroller TC397. The proposed strategy was validated through experiments on a real permanent magnet synchronous motor (PMSM), and experimental results prove the effectiveness of the ANN.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
IECON 2024- 50th Annual Conference of the IEEE Industrial Electronics Society
ISBN
978-1-6654-6454-3
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
1-6
Název nakladatele
IEEE
Místo vydání
Chicago, IL, USA
Místo konání akce
Chicago
Datum konání akce
3. 11. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—