Visualization of molecular stacking using low-energy electron microscopy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F23%3APU150282" target="_blank" >RIV/00216305:26620/23:PU150282 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S030439912300116X?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S030439912300116X?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ultramic.2023.113799" target="_blank" >10.1016/j.ultramic.2023.113799</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Visualization of molecular stacking using low-energy electron microscopy
Popis výsledku v původním jazyce
The design of metal-organic interfaces with atomic precision enables the fabrication of highly efficient devices with tailored functionality. The possibility of fast and reliable analysis of molecular stacking order at the interface is of crucial importance, as the interfacial stacking order of molecules directly influences the quality and functionality of fabricated organic-based devices. Dark-field (DF) imaging using Low-Energy Electron Microscopy (LEEM) allows the visualization of areas with a specific structure or symmetry. However, distinguishing layers with different stacking orders featuring the same diffraction patterns becomes more complicated. Here we show that the top layer shift in organic molecular bilayers induces measurable differences in spot intensities of respective diffraction patterns that can be visualized in DF images. Scanning Tunneling Microscopy (STM) imaging of molecular bilayers allowed us to measure the shift directly and compare it with the diffraction data. We also provide a conceptual diffraction model based on the electron path differences, which qualitatively explains the observed phenomenon.
Název v anglickém jazyce
Visualization of molecular stacking using low-energy electron microscopy
Popis výsledku anglicky
The design of metal-organic interfaces with atomic precision enables the fabrication of highly efficient devices with tailored functionality. The possibility of fast and reliable analysis of molecular stacking order at the interface is of crucial importance, as the interfacial stacking order of molecules directly influences the quality and functionality of fabricated organic-based devices. Dark-field (DF) imaging using Low-Energy Electron Microscopy (LEEM) allows the visualization of areas with a specific structure or symmetry. However, distinguishing layers with different stacking orders featuring the same diffraction patterns becomes more complicated. Here we show that the top layer shift in organic molecular bilayers induces measurable differences in spot intensities of respective diffraction patterns that can be visualized in DF images. Scanning Tunneling Microscopy (STM) imaging of molecular bilayers allowed us to measure the shift directly and compare it with the diffraction data. We also provide a conceptual diffraction model based on the electron path differences, which qualitatively explains the observed phenomenon.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
21100 - Other engineering and technologies
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-04551S" target="_blank" >GA22-04551S: Růst organických polovodičů na grafenu: od vzniku první monovrstvy k molekulárním multivrstvám</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ULTRAMICROSCOPY
ISSN
0304-3991
e-ISSN
1879-2723
Svazek periodika
253
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
6
Strana od-do
„“-„“
Kód UT WoS článku
001058392400001
EID výsledku v databázi Scopus
2-s2.0-85162922423