Bounded solutions of discrete equations with several fractional differences
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F24%3APU151896" target="_blank" >RIV/00216305:26620/24:PU151896 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.aip.org/aip/acp/article-abstract/3094/1/500044/3297296/Bounded-solutions-of-discrete-equations-with?redirectedFrom=fulltext" target="_blank" >https://pubs.aip.org/aip/acp/article-abstract/3094/1/500044/3297296/Bounded-solutions-of-discrete-equations-with?redirectedFrom=fulltext</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0211400" target="_blank" >10.1063/5.0211400</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bounded solutions of discrete equations with several fractional differences
Popis výsledku v původním jazyce
In the paper is considered a fractional discrete equation Sigma(s)(pi=1) Delta(beta pi) z(k + 1) = G(k)(k, z(k),..., z(k(0))), k = k(0), k(0) + 1,... where Delta(beta pi), beta(pi) > 0, pi = 1,..., s, are the beta(pi)-order fractional differences, G(k): {k} x Rk-k0+1 -> R, k(0) is an element of Z, k is an element of Z, k >= k(0) and z: {k(0), k(0) + 1,...} -> R. Sufficient conditions are given for the existence of bounded solutions satisfying inequalities b(k) < z(k) < c(k), for all k >= k(0) where b and c are real functions satisfying b(k) < c(k). An application is considered to an equation with several fractional differences Sigma(s)(pi=1) Delta(beta pi) z(k + 1) = G(k)(k, z(k),..., z(k(0))), k = k(0), k(0) + 1,... where xi is an element of R and sigma: {k(0), k(0) + 1,...}-> R. It is proved that there exists a bounded solution satisfying the inequality vertical bar z(k)vertical bar < L, k = k(0), k(0) + 1,..., for a constant L.
Název v anglickém jazyce
Bounded solutions of discrete equations with several fractional differences
Popis výsledku anglicky
In the paper is considered a fractional discrete equation Sigma(s)(pi=1) Delta(beta pi) z(k + 1) = G(k)(k, z(k),..., z(k(0))), k = k(0), k(0) + 1,... where Delta(beta pi), beta(pi) > 0, pi = 1,..., s, are the beta(pi)-order fractional differences, G(k): {k} x Rk-k0+1 -> R, k(0) is an element of Z, k is an element of Z, k >= k(0) and z: {k(0), k(0) + 1,...} -> R. Sufficient conditions are given for the existence of bounded solutions satisfying inequalities b(k) < z(k) < c(k), for all k >= k(0) where b and c are real functions satisfying b(k) < c(k). An application is considered to an equation with several fractional differences Sigma(s)(pi=1) Delta(beta pi) z(k + 1) = G(k)(k, z(k),..., z(k(0))), k = k(0), k(0) + 1,... where xi is an element of R and sigma: {k(0), k(0) + 1,...}-> R. It is proved that there exists a bounded solution satisfying the inequality vertical bar z(k)vertical bar < L, k = k(0), k(0) + 1,..., for a constant L.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-23815S" target="_blank" >GA19-23815S: Identifikace nelineárních dynamických systémů zlomkového řádu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
AIP Conference Proceedings, Volume 3094, Issue 1, 7 June 2024, International Conference of Numerical Analysis and Applied Mathematics 2022, ICNAAM 2022
ISBN
9780735449541
ISSN
0094-243X
e-ISSN
—
Počet stran výsledku
4
Strana od-do
„500044-1“-„500044-4“
Název nakladatele
American Institute of Physics
Místo vydání
USA
Místo konání akce
Crete, Heraklion, hotel Galaxy
Datum konání akce
11. 9. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001244923000249