Interpreting convolutional neural network classifiers applied to laser-induced breakdown optical emission spectra
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F24%3APU155235" target="_blank" >RIV/00216305:26620/24:PU155235 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14330/24:00137458
Výsledek na webu
<a href="https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0039914023006975?via%3Dihub" target="_blank" >https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0039914023006975?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.talanta.2023.124946" target="_blank" >10.1016/j.talanta.2023.124946</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Interpreting convolutional neural network classifiers applied to laser-induced breakdown optical emission spectra
Popis výsledku v původním jazyce
Laser-induced breakdown spectroscopy (LIBS) is a well-established industrial tool with emerging relevance in high-stakes applications. To achieve its required analytical performance, LIBS is often coupled with advanced pattern-recognition algorithms, including machine learning models. Namely, artificial neural networks (ANNs) have recently become a frequently applied part of LIBS practitioners' toolkit. Nevertheless, ANNs are generally applied in spectroscopy as black-box models, without a real insight into their predictions. Here, we apply various post-hoc interpretation techniques with the aim of understanding the decision-making of convolutional neural networks. Namely, we find synthetic spectra that yield perfect expected classification predictions and denote these spectra class-specific prototype spectra. We investigate the simplest possible convolutional neural network (consisting of a single convolutional and fully connected layers) trained to classify the extended calibration dataset collected for the ChemCam laser-induced breakdown spectroscopy instrument of the Curiosity Mars rover. The trained convolutional neural network predominantly learned meaningful spectroscopic features which correspond to the elements comprising the major oxides found in the calibration targets. In addition, the discrete convolution operation with the learnt filters results in a crude baseline correction.
Název v anglickém jazyce
Interpreting convolutional neural network classifiers applied to laser-induced breakdown optical emission spectra
Popis výsledku anglicky
Laser-induced breakdown spectroscopy (LIBS) is a well-established industrial tool with emerging relevance in high-stakes applications. To achieve its required analytical performance, LIBS is often coupled with advanced pattern-recognition algorithms, including machine learning models. Namely, artificial neural networks (ANNs) have recently become a frequently applied part of LIBS practitioners' toolkit. Nevertheless, ANNs are generally applied in spectroscopy as black-box models, without a real insight into their predictions. Here, we apply various post-hoc interpretation techniques with the aim of understanding the decision-making of convolutional neural networks. Namely, we find synthetic spectra that yield perfect expected classification predictions and denote these spectra class-specific prototype spectra. We investigate the simplest possible convolutional neural network (consisting of a single convolutional and fully connected layers) trained to classify the extended calibration dataset collected for the ChemCam laser-induced breakdown spectroscopy instrument of the Curiosity Mars rover. The trained convolutional neural network predominantly learned meaningful spectroscopic features which correspond to the elements comprising the major oxides found in the calibration targets. In addition, the discrete convolution operation with the learnt filters results in a crude baseline correction.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10406 - Analytical chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
TALANTA
ISSN
0039-9140
e-ISSN
1873-3573
Svazek periodika
266
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
„“-„“
Kód UT WoS článku
001044992600001
EID výsledku v databázi Scopus
2-s2.0-85165081844