Interpreting neural networks trained to predict plasma temperature from optical emission spectra
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F24%3A00584861" target="_blank" >RIV/61388955:_____/24:00584861 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26620/24:PU151504
Výsledek na webu
<a href="https://hdl.handle.net/11104/0352649" target="_blank" >https://hdl.handle.net/11104/0352649</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/d3ja00363a" target="_blank" >10.1039/d3ja00363a</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Interpreting neural networks trained to predict plasma temperature from optical emission spectra
Popis výsledku v původním jazyce
We explore the application of artificial neural networks (ANNs) for predicting plasma temperatures in Laser-Induced Breakdown Spectroscopy (LIBS) analysis. Estimating plasma temperature from emission spectra is often challenging due to spectral interference and matrix effects. Traditional methods like the Boltzmann plot technique have limitations, both in applicability due to various matrix effects and in accuracy owing to the uncertainty of the underlying spectroscopic constants. Consequently, ANNs have already been successfully demonstrated as a viable alternative for plasma temperature prediction. We leverage synthetic data to isolate temperature effects from other factors and study the relationship between the LIBS spectra and temperature learnt by the ANN. We employ various post-hoc model interpretation techniques, including gradient-based methods, to verify that ANNs learn meaningful spectroscopic features for temperature prediction. Our findings demonstrate the potential of ANNs to learn complex relationships in LIBS spectra, offering a promising avenue for improved plasma temperature estimation and enhancing the overall accuracy of LIBS analysis.
Název v anglickém jazyce
Interpreting neural networks trained to predict plasma temperature from optical emission spectra
Popis výsledku anglicky
We explore the application of artificial neural networks (ANNs) for predicting plasma temperatures in Laser-Induced Breakdown Spectroscopy (LIBS) analysis. Estimating plasma temperature from emission spectra is often challenging due to spectral interference and matrix effects. Traditional methods like the Boltzmann plot technique have limitations, both in applicability due to various matrix effects and in accuracy owing to the uncertainty of the underlying spectroscopic constants. Consequently, ANNs have already been successfully demonstrated as a viable alternative for plasma temperature prediction. We leverage synthetic data to isolate temperature effects from other factors and study the relationship between the LIBS spectra and temperature learnt by the ANN. We employ various post-hoc model interpretation techniques, including gradient-based methods, to verify that ANNs learn meaningful spectroscopic features for temperature prediction. Our findings demonstrate the potential of ANNs to learn complex relationships in LIBS spectra, offering a promising avenue for improved plasma temperature estimation and enhancing the overall accuracy of LIBS analysis.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Analytical Atomic Spectrometry
ISSN
0267-9477
e-ISSN
1364-5544
Svazek periodika
39
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
15
Strana od-do
1160-1174
Kód UT WoS článku
001186384500001
EID výsledku v databázi Scopus
2-s2.0-85188059119