Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Planar FIB Milling of Copper by using the Novel Rocking Stage Technology

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F01733214%3A_____%2F16%3AN0000006" target="_blank" >RIV/01733214:_____/16:N0000006 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://easychair.org/smart-program/ESREF2016/2016-09-20.html#talk:27670" target="_blank" >http://easychair.org/smart-program/ESREF2016/2016-09-20.html#talk:27670</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Planar FIB Milling of Copper by using the Novel Rocking Stage Technology

  • Popis výsledku v původním jazyce

    Copper has found immense applications within the semiconductor industry. In order to make site-specific alterations using focused ion beam (FIB) at nanoscale levels, it is imperative we manage to operate on polycrystalline copper directly with no need for an extensive grain size and orientation study prior to performing FIB milling operations. Homogenous copper FIB milling arises from the need to perform various circuit edit operations below the dielectric layer following the copper layer. If the layer beneath the dielectric is affected by inhomogeneous milling, it can lead to short-circuit and eventual device breakdown. Failure analysis on an integrated circuit was performed using rocking stage with 6-axes piezo movement capabilities together with the novel approach of the combined Xe-plasma ion source FIB and SEM system (XEIA. Site-specific milling of copper with different milling strategies were tested to optimize time and homogeneity of the milling across the target surface and to overcome the channelling effect posed by polycrystalline copper. Only during the last few nanometres of copper layer the water vapour is used to protect the dielectric layer. The complete removal of copper was followed with XeF2 assisted milling of the dielectric layer to observe the unharmed circuitry. Channelling effect was reduced by regulating the sputtering rates across different grains keeping the underlying dielectric layer safe. High-resolution scanning electron microscopy (HR-SEM) imaging was used for constant monitoring of the removed material to help modulate the process for highest throughput in the least possible amount of time.

  • Název v anglickém jazyce

    Planar FIB Milling of Copper by using the Novel Rocking Stage Technology

  • Popis výsledku anglicky

    Copper has found immense applications within the semiconductor industry. In order to make site-specific alterations using focused ion beam (FIB) at nanoscale levels, it is imperative we manage to operate on polycrystalline copper directly with no need for an extensive grain size and orientation study prior to performing FIB milling operations. Homogenous copper FIB milling arises from the need to perform various circuit edit operations below the dielectric layer following the copper layer. If the layer beneath the dielectric is affected by inhomogeneous milling, it can lead to short-circuit and eventual device breakdown. Failure analysis on an integrated circuit was performed using rocking stage with 6-axes piezo movement capabilities together with the novel approach of the combined Xe-plasma ion source FIB and SEM system (XEIA. Site-specific milling of copper with different milling strategies were tested to optimize time and homogeneity of the milling across the target surface and to overcome the channelling effect posed by polycrystalline copper. Only during the last few nanometres of copper layer the water vapour is used to protect the dielectric layer. The complete removal of copper was followed with XeF2 assisted milling of the dielectric layer to observe the unharmed circuitry. Channelling effect was reduced by regulating the sputtering rates across different grains keeping the underlying dielectric layer safe. High-resolution scanning electron microscopy (HR-SEM) imaging was used for constant monitoring of the removed material to help modulate the process for highest throughput in the least possible amount of time.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

    JA - Elektronika a optoelektronika, elektrotechnika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/TE01020233" target="_blank" >TE01020233: Platforma pokročilých mikroskopických a spektroskopických technik pro nano a mikrotechnologie</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů