A Model for Epileptic Seizure Diagnosis Using the Combination of Ensemble Learningand Deep Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F04274644%3A_____%2F24%3A%230001150" target="_blank" >RIV/04274644:_____/24:#0001150 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10670408" target="_blank" >https://ieeexplore.ieee.org/document/10670408</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2024.3457018" target="_blank" >10.1109/ACCESS.2024.3457018</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Model for Epileptic Seizure Diagnosis Using the Combination of Ensemble Learningand Deep Learning
Popis výsledku v původním jazyce
Epileptic seizures can be dangerous as they cause sudden and uncontrolled electrical activity in the brain which can lead to injuries if one falls or loss of control over physical functions. To mitigate these risks, machine learning and deep learning algorithms are being developed to anticipate seizure occurrences. Accurate prediction of seizures could enable patients to adopt preventive strategies or initiate medical interventions to halt seizures, thereby minimizing injuries and enhancing safety for individuals afflicted with epilepsy. This paper aims to combine neural networks and Ensemble learning to enhance the accuracy of diagnosing epileptic seizures. By leveraging the strengths of both techniques, the precision in seizure diagnosis can be significantly improved. It also improves the evaluation metrics used in machine learning methodologies for a more comprehensive assessment of diagnostic outcomes. This approach ensures a thorough understanding of the effectiveness of the proposed approach. In this paper, a model with a supreme precision rate is developed to detect epileptic seizures with the help of EEG signals. This study uses an ensemble method, which employs several algorithms, for instance XGB, SVM, RF, and BiLSTM. The used dataset is open access from Bonn University. The proposed methodology reached 98.52% accuracy, 97.37% precision, 95.29% recall, and 96.32% F1-score, respectively.
Název v anglickém jazyce
A Model for Epileptic Seizure Diagnosis Using the Combination of Ensemble Learningand Deep Learning
Popis výsledku anglicky
Epileptic seizures can be dangerous as they cause sudden and uncontrolled electrical activity in the brain which can lead to injuries if one falls or loss of control over physical functions. To mitigate these risks, machine learning and deep learning algorithms are being developed to anticipate seizure occurrences. Accurate prediction of seizures could enable patients to adopt preventive strategies or initiate medical interventions to halt seizures, thereby minimizing injuries and enhancing safety for individuals afflicted with epilepsy. This paper aims to combine neural networks and Ensemble learning to enhance the accuracy of diagnosing epileptic seizures. By leveraging the strengths of both techniques, the precision in seizure diagnosis can be significantly improved. It also improves the evaluation metrics used in machine learning methodologies for a more comprehensive assessment of diagnostic outcomes. This approach ensures a thorough understanding of the effectiveness of the proposed approach. In this paper, a model with a supreme precision rate is developed to detect epileptic seizures with the help of EEG signals. This study uses an ensemble method, which employs several algorithms, for instance XGB, SVM, RF, and BiLSTM. The used dataset is open access from Bonn University. The proposed methodology reached 98.52% accuracy, 97.37% precision, 95.29% recall, and 96.32% F1-score, respectively.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
2169-3536
Svazek periodika
12
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
137132-137143
Kód UT WoS článku
001327294900001
EID výsledku v databázi Scopus
2-s2.0-85204143969