Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Improving Access to Medical Information for Multilingual Patients using Pipelined Ensemble Average based Machine Translation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3AELHEGRXZ" target="_blank" >RIV/00216208:11320/23:ELHEGRXZ - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://dl.acm.org/doi/10.1145/3617372" target="_blank" >https://dl.acm.org/doi/10.1145/3617372</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3617372" target="_blank" >10.1145/3617372</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Improving Access to Medical Information for Multilingual Patients using Pipelined Ensemble Average based Machine Translation

  • Popis výsledku v původním jazyce

    "Machine translation has shown potential in improving access to medical information and healthcare services for multilingual patients. This research aims to enhance machine translation accuracy in the medical field, specifically for translating from Hindi to English. The study introduces a new approach that dynamically allocates decoding parameters using regression models, overcoming the limitations of fixed parameters in the decoder. A comprehensive dataset is created to address limited data availability, enabling regression models to predict optimal pruning parameters. The main motivation for the study is the introduction of a regression method for optimizing pruning parameters, which is a novel approach in this context. The proposed approach outperforms existing methods, achieving improved translation accuracy. Standard metrics such as the BLEU score are used to evaluate translations. Ensemble average and pipeline approaches further enhance performance. The improved performance of the proposed models can be attributed to the ensemble of diverse models (Extra Trees, LightGBM, XGBoost, and Random Forest) that employ various techniques to reduce overfitting, enhance prediction accuracy, and improve translation by correcting prediction errors. The study contributes to facilitating the translation and sharing of medical literature, promoting collaboration and knowledge exchange across languages. The research demonstrates the effectiveness of the regression method for optimizing pruning parameters in machine translation, leading to improved translation accuracy in the medical field. The proposed models offer promising results, paving the way for enhanced machine translation systems and promoting collaboration and knowledge exchange in the medical domain. The source code is available at https://huggingface.co/debajyoty/statistical-regression-Based-MT/tree/main/Statistical-Regression-SMT."

  • Název v anglickém jazyce

    Improving Access to Medical Information for Multilingual Patients using Pipelined Ensemble Average based Machine Translation

  • Popis výsledku anglicky

    "Machine translation has shown potential in improving access to medical information and healthcare services for multilingual patients. This research aims to enhance machine translation accuracy in the medical field, specifically for translating from Hindi to English. The study introduces a new approach that dynamically allocates decoding parameters using regression models, overcoming the limitations of fixed parameters in the decoder. A comprehensive dataset is created to address limited data availability, enabling regression models to predict optimal pruning parameters. The main motivation for the study is the introduction of a regression method for optimizing pruning parameters, which is a novel approach in this context. The proposed approach outperforms existing methods, achieving improved translation accuracy. Standard metrics such as the BLEU score are used to evaluate translations. Ensemble average and pipeline approaches further enhance performance. The improved performance of the proposed models can be attributed to the ensemble of diverse models (Extra Trees, LightGBM, XGBoost, and Random Forest) that employ various techniques to reduce overfitting, enhance prediction accuracy, and improve translation by correcting prediction errors. The study contributes to facilitating the translation and sharing of medical literature, promoting collaboration and knowledge exchange across languages. The research demonstrates the effectiveness of the regression method for optimizing pruning parameters in machine translation, leading to improved translation accuracy in the medical field. The proposed models offer promising results, paving the way for enhanced machine translation systems and promoting collaboration and knowledge exchange in the medical domain. The source code is available at https://huggingface.co/debajyoty/statistical-regression-Based-MT/tree/main/Statistical-Regression-SMT."

Klasifikace

  • Druh

    J<sub>ost</sub> - Ostatní články v recenzovaných periodicích

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    "ACM Transactions on Asian and Low-Resource Language Information Processing"

  • ISSN

    2375-4699

  • e-ISSN

  • Svazek periodika

    ""

  • Číslo periodika v rámci svazku

    2023

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    17

  • Strana od-do

    1-17

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus