A method for detecting botnets in IT infrastructure using a neural network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F25840886%3A_____%2F24%3AN0000008" target="_blank" >RIV/25840886:_____/24:N0000008 - isvavai.cz</a>
Výsledek na webu
<a href="https://ceur-ws.org/Vol-3736/paper21.pdf" target="_blank" >https://ceur-ws.org/Vol-3736/paper21.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A method for detecting botnets in IT infrastructure using a neural network
Popis výsledku v původním jazyce
Information technology has become an integral part of modern life, but with this come new cyber threats. One of them is botnets—networks of infected computers that criminals use for DDoS attacks, data theft, and spam distribution. Traditional detection methods, such as signature analysis and rule- based approaches, often fail to handle these threats, necessitating the implementation of advanced methods. This article presents a botnet detection method in IT infrastructure based on the use of neural networks. The proposed approach involves creating a baseline configuration of the IT infrastructure by a system administrator for further training of neural networks to detect botnet attacks. Experiments conducted on four types of botnets (DDoS, spam, data theft, and cryptocurrency mining) demonstrated high accuracy and efficiency of the system. The method achieved 96% accuracy in detecting DDoS attacks, 93% in detecting spam botnets, 95% in detecting data theft botnets, and 94% in detecting cryptocurrency mining botnets. The use of a genetic algorithm for training neural networks improved detection efficiency. The method demonstrates high detection speed, with an average time of less than one second. Thus, the developed method is an effective tool for ensuring the security of IT infrastructure, confirming the relevance of using neural networks and machine learning for cybersecurity. Further research is aimed at improving the adaptability of neural networks and reducing the computational resources required for model parameter optimization.
Název v anglickém jazyce
A method for detecting botnets in IT infrastructure using a neural network
Popis výsledku anglicky
Information technology has become an integral part of modern life, but with this come new cyber threats. One of them is botnets—networks of infected computers that criminals use for DDoS attacks, data theft, and spam distribution. Traditional detection methods, such as signature analysis and rule- based approaches, often fail to handle these threats, necessitating the implementation of advanced methods. This article presents a botnet detection method in IT infrastructure based on the use of neural networks. The proposed approach involves creating a baseline configuration of the IT infrastructure by a system administrator for further training of neural networks to detect botnet attacks. Experiments conducted on four types of botnets (DDoS, spam, data theft, and cryptocurrency mining) demonstrated high accuracy and efficiency of the system. The method achieved 96% accuracy in detecting DDoS attacks, 93% in detecting spam botnets, 95% in detecting data theft botnets, and 94% in detecting cryptocurrency mining botnets. The use of a genetic algorithm for training neural networks improved detection efficiency. The method demonstrates high detection speed, with an average time of less than one second. Thus, the developed method is an effective tool for ensuring the security of IT infrastructure, confirming the relevance of using neural networks and machine learning for cybersecurity. Further research is aimed at improving the adaptability of neural networks and reducing the computational resources required for model parameter optimization.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20202 - Communication engineering and systems
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ICyberPhyS-2024: 1st International Workshop on Intelligent & CyberPhysical Systems
ISBN
—
ISSN
1613-0073
e-ISSN
—
Počet stran výsledku
11
Strana od-do
282-292
Název nakladatele
CEUR
Místo vydání
Khmelnytskyi, Ukraine
Místo konání akce
Khmelnytskyi, Ukraine
Datum konání akce
28. 6. 2024
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—