Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A method for detecting botnets in IT infrastructure using a neural network

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F25840886%3A_____%2F24%3AN0000008" target="_blank" >RIV/25840886:_____/24:N0000008 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ceur-ws.org/Vol-3736/paper21.pdf" target="_blank" >https://ceur-ws.org/Vol-3736/paper21.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A method for detecting botnets in IT infrastructure using a neural network

  • Popis výsledku v původním jazyce

    Information technology has become an integral part of modern life, but with this come new cyber threats. One of them is botnets—networks of infected computers that criminals use for DDoS attacks, data theft, and spam distribution. Traditional detection methods, such as signature analysis and rule- based approaches, often fail to handle these threats, necessitating the implementation of advanced methods. This article presents a botnet detection method in IT infrastructure based on the use of neural networks. The proposed approach involves creating a baseline configuration of the IT infrastructure by a system administrator for further training of neural networks to detect botnet attacks. Experiments conducted on four types of botnets (DDoS, spam, data theft, and cryptocurrency mining) demonstrated high accuracy and efficiency of the system. The method achieved 96% accuracy in detecting DDoS attacks, 93% in detecting spam botnets, 95% in detecting data theft botnets, and 94% in detecting cryptocurrency mining botnets. The use of a genetic algorithm for training neural networks improved detection efficiency. The method demonstrates high detection speed, with an average time of less than one second. Thus, the developed method is an effective tool for ensuring the security of IT infrastructure, confirming the relevance of using neural networks and machine learning for cybersecurity. Further research is aimed at improving the adaptability of neural networks and reducing the computational resources required for model parameter optimization.

  • Název v anglickém jazyce

    A method for detecting botnets in IT infrastructure using a neural network

  • Popis výsledku anglicky

    Information technology has become an integral part of modern life, but with this come new cyber threats. One of them is botnets—networks of infected computers that criminals use for DDoS attacks, data theft, and spam distribution. Traditional detection methods, such as signature analysis and rule- based approaches, often fail to handle these threats, necessitating the implementation of advanced methods. This article presents a botnet detection method in IT infrastructure based on the use of neural networks. The proposed approach involves creating a baseline configuration of the IT infrastructure by a system administrator for further training of neural networks to detect botnet attacks. Experiments conducted on four types of botnets (DDoS, spam, data theft, and cryptocurrency mining) demonstrated high accuracy and efficiency of the system. The method achieved 96% accuracy in detecting DDoS attacks, 93% in detecting spam botnets, 95% in detecting data theft botnets, and 94% in detecting cryptocurrency mining botnets. The use of a genetic algorithm for training neural networks improved detection efficiency. The method demonstrates high detection speed, with an average time of less than one second. Thus, the developed method is an effective tool for ensuring the security of IT infrastructure, confirming the relevance of using neural networks and machine learning for cybersecurity. Further research is aimed at improving the adaptability of neural networks and reducing the computational resources required for model parameter optimization.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20202 - Communication engineering and systems

Návaznosti výsledku

  • Projekt

  • Návaznosti

    N - Vyzkumna aktivita podporovana z neverejnych zdroju

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    ICyberPhyS-2024: 1st International Workshop on Intelligent & CyberPhysical Systems

  • ISBN

  • ISSN

    1613-0073

  • e-ISSN

  • Počet stran výsledku

    11

  • Strana od-do

    282-292

  • Název nakladatele

    CEUR

  • Místo vydání

    Khmelnytskyi, Ukraine

  • Místo konání akce

    Khmelnytskyi, Ukraine

  • Datum konání akce

    28. 6. 2024

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku