Methods for detecting software implants in corporate networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F25840886%3A_____%2F24%3AN0000010" target="_blank" >RIV/25840886:_____/24:N0000010 - isvavai.cz</a>
Výsledek na webu
<a href="https://ceur-ws.org/Vol-3675/paper20.pdf" target="_blank" >https://ceur-ws.org/Vol-3675/paper20.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Methods for detecting software implants in corporate networks
Popis výsledku v původním jazyce
With innovations in the technological sphere, the development of mechanisms that allow obtaining confidential information without the proper authorization of the owner is increasing. One of such mechanisms is software implants. This type of software is very difficult to detect because it does not use specialized signatures or code obfuscation, making it difficult to detect. This paper proposes a software implant detection system based on recurrent neural networks and a classifier. The classifier is a mechanism that describes the operating behavior of the software and provides the recurrent neural network with the ability to learn. This mechanism helps to identify behavioral patterns characteristic of software implants and notify the user of the possible risk of data loss. During the experiments, it was found that in order to successfully detect a software implant that initiates the creation of additional processes, the system needs to be trained for 50 epochs. Thus, the detection efficiency is 97.50%, which indicates the possibility of using this system as an effective mechanism for detecting software implants in corporate systems. Given the results obtained, it can be recommended for use in a wide range of information systems to ensure reliable protection against potential security threats.
Název v anglickém jazyce
Methods for detecting software implants in corporate networks
Popis výsledku anglicky
With innovations in the technological sphere, the development of mechanisms that allow obtaining confidential information without the proper authorization of the owner is increasing. One of such mechanisms is software implants. This type of software is very difficult to detect because it does not use specialized signatures or code obfuscation, making it difficult to detect. This paper proposes a software implant detection system based on recurrent neural networks and a classifier. The classifier is a mechanism that describes the operating behavior of the software and provides the recurrent neural network with the ability to learn. This mechanism helps to identify behavioral patterns characteristic of software implants and notify the user of the possible risk of data loss. During the experiments, it was found that in order to successfully detect a software implant that initiates the creation of additional processes, the system needs to be trained for 50 epochs. Thus, the detection efficiency is 97.50%, which indicates the possibility of using this system as an effective mechanism for detecting software implants in corporate systems. Given the results obtained, it can be recommended for use in a wide range of information systems to ensure reliable protection against potential security threats.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20202 - Communication engineering and systems
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
IntelITSIS’2024: 5th International Workshop on Intelligent Information Technologies and Systems of Information Security, March 28, 2024
ISBN
—
ISSN
1613-0073
e-ISSN
—
Počet stran výsledku
15
Strana od-do
270–284
Název nakladatele
CEUR
Místo vydání
Khmelnytskyi, Ukraine
Místo konání akce
Khmelnytskyi, Ukraine
Datum konání akce
28. 3. 2024
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—