Phase-field ductile fracture analysis of multi-materials and functionally graded composites through numerical and experimental methods
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F26316919%3A_____%2F23%3AN0000030" target="_blank" >RIV/26316919:_____/23:N0000030 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0167844223001696" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0167844223001696</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.tafmec.2023.103906" target="_blank" >10.1016/j.tafmec.2023.103906</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Phase-field ductile fracture analysis of multi-materials and functionally graded composites through numerical and experimental methods
Popis výsledku v původním jazyce
Despite extensive studies on material models for fracture applicable to homogenous materials, the demand for advanced numerical methods to predict the failure in multi-materials and functionally graded materials (FGMs) remains substantial. This study aims to address this gap by using a phase-field approach for analyzing crack development and ductile fracture in FGMs via numerical and experimental methods. To account for the failure induced by material plastic deformations, we introduce the elastoplastic material framework within the damage driving force. This framework enables us to analyze fracture in the FGM setting, whereby the gradual spatial changes of the elastoplastic and fracture properties across the functionally graded medium are modelled by considering the effective property values calculated via rule of mixtures. The influence of the gradation profiles and orientations on the problems of crack initiation, propagation, and fully-developed crack pattern is elucidated via mixed-mode crack analyses on a representative numerical example. In particular, the fracture resistance changes resulting from the property mismatches between the constituent FGM materials are assessed. To determine the efficacy of the numerical model in predicting the fracture behavior, it is evaluated against the experimental tensile test data obtained from miniaturized tensile test specimens excised from an FGM block consisting of 316L and IN718 powders, deposited via Laser powder blown Directed Energy Deposition (LDED).
Název v anglickém jazyce
Phase-field ductile fracture analysis of multi-materials and functionally graded composites through numerical and experimental methods
Popis výsledku anglicky
Despite extensive studies on material models for fracture applicable to homogenous materials, the demand for advanced numerical methods to predict the failure in multi-materials and functionally graded materials (FGMs) remains substantial. This study aims to address this gap by using a phase-field approach for analyzing crack development and ductile fracture in FGMs via numerical and experimental methods. To account for the failure induced by material plastic deformations, we introduce the elastoplastic material framework within the damage driving force. This framework enables us to analyze fracture in the FGM setting, whereby the gradual spatial changes of the elastoplastic and fracture properties across the functionally graded medium are modelled by considering the effective property values calculated via rule of mixtures. The influence of the gradation profiles and orientations on the problems of crack initiation, propagation, and fully-developed crack pattern is elucidated via mixed-mode crack analyses on a representative numerical example. In particular, the fracture resistance changes resulting from the property mismatches between the constituent FGM materials are assessed. To determine the efficacy of the numerical model in predicting the fracture behavior, it is evaluated against the experimental tensile test data obtained from miniaturized tensile test specimens excised from an FGM block consisting of 316L and IN718 powders, deposited via Laser powder blown Directed Energy Deposition (LDED).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000836" target="_blank" >EF16_019/0000836: Výzkum pokročilých ocelí s unikátními vlastnostmi</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
THEORETICAL AND APPLIED FRACTURE MECHANICS
ISSN
0167-8442
e-ISSN
1872-7638
Svazek periodika
125
Číslo periodika v rámci svazku
JUN2023
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
14
Strana od-do
nestránkováno
Kód UT WoS článku
000986855400001
EID výsledku v databázi Scopus
2-s2.0-85152958644