Surrogate-assisted evolutionary multiobjective shape optimization of an air intake ventilation system
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F28645413%3A_____%2F17%3AN0000001" target="_blank" >RIV/28645413:_____/17:N0000001 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/7969486/" target="_blank" >https://ieeexplore.ieee.org/document/7969486/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CEC.2017.7969486" target="_blank" >10.1109/CEC.2017.7969486</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Surrogate-assisted evolutionary multiobjective shape optimization of an air intake ventilation system
Popis výsledku v původním jazyce
We tackle three different challenges in solving a real-world industrial problem: formulating the optimization problem, connecting different simulation tools and dealing with computationally expensive objective functions. The problem to be optimized is an air intake ventilation system of a tractor and involves computational fluid dynamics (CFD) simulations. We describe the modeling of the system and its numerical evaluation with different commercial software to obtain three expensive objective functions. To obtain solutions in few function evaluations, a recently proposed surrogate-assisted evolutionary algorithm K-RVEA is applied. The diameters of four different outlets of the ventilation system are considered as decision variables. From the set of nondominated solutions generated by K-RVEA, a decision maker having substance knowledge selected the final one based on his preferences. The final selected solution has better objective function values compared to the baseline solution of the initial design. A comparison of solutions with K-RVEA and RVEA (which does not use surrogates) is also performed to show the potential of using surrogates.
Název v anglickém jazyce
Surrogate-assisted evolutionary multiobjective shape optimization of an air intake ventilation system
Popis výsledku anglicky
We tackle three different challenges in solving a real-world industrial problem: formulating the optimization problem, connecting different simulation tools and dealing with computationally expensive objective functions. The problem to be optimized is an air intake ventilation system of a tractor and involves computational fluid dynamics (CFD) simulations. We describe the modeling of the system and its numerical evaluation with different commercial software to obtain three expensive objective functions. To obtain solutions in few function evaluations, a recently proposed surrogate-assisted evolutionary algorithm K-RVEA is applied. The diameters of four different outlets of the ventilation system are considered as decision variables. From the set of nondominated solutions generated by K-RVEA, a decision maker having substance knowledge selected the final one based on his preferences. The final selected solution has better objective function values compared to the baseline solution of the initial design. A comparison of solutions with K-RVEA and RVEA (which does not use surrogates) is also performed to show the potential of using surrogates.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Evolutionary Computation (CEC), 2017 IEEE Congress on
ISBN
978-1-5090-4602-7
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
—
Název nakladatele
IEEE
Místo vydání
—
Místo konání akce
San Sebastian, Spain
Datum konání akce
5. 6. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—