Elasto-kinematic computational model of suspension with flexible supporting elements
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F29142890%3A_____%2F16%3AN0000029" target="_blank" >RIV/29142890:_____/16:N0000029 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.14311/AP.2016.56.0147" target="_blank" >http://dx.doi.org/10.14311/AP.2016.56.0147</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/AP.2016.56.0147" target="_blank" >10.14311/AP.2016.56.0147</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Elasto-kinematic computational model of suspension with flexible supporting elements
Popis výsledku v původním jazyce
This paper analyzes the impact of flexibility of individual supporting elements of independent suspension on its elastokinematic characteristics. The toe and camber angle are the geometric parameters of the suspension, which waveforms and their changes under the action of vertical, longitudinal and transverse forces affect the stability of the vehicle. To study these dependencies the computational multibody system (MBS) model of axle suspension in the system HyperWorks is created. There are implemented Finite Element Method (FEM) models reflecting the flexibility of the main supporting elements. These are subframe, the longitudinal arms, transverse arms and knuckle. Flexible models are developed using Component Mode Synthesis (CMS) by Craig-Bampton. The model further comprises force elements, such as helical springs, shock absorbers with a stop of the wheel and the antiroll bar. Rubber-metal bushings are modeled flexibly using nonlinear deformation characteristics. Simulation results are validated by experimental measurements of geometric parameters of real suspension.
Název v anglickém jazyce
Elasto-kinematic computational model of suspension with flexible supporting elements
Popis výsledku anglicky
This paper analyzes the impact of flexibility of individual supporting elements of independent suspension on its elastokinematic characteristics. The toe and camber angle are the geometric parameters of the suspension, which waveforms and their changes under the action of vertical, longitudinal and transverse forces affect the stability of the vehicle. To study these dependencies the computational multibody system (MBS) model of axle suspension in the system HyperWorks is created. There are implemented Finite Element Method (FEM) models reflecting the flexibility of the main supporting elements. These are subframe, the longitudinal arms, transverse arms and knuckle. Flexible models are developed using Component Mode Synthesis (CMS) by Craig-Bampton. The model further comprises force elements, such as helical springs, shock absorbers with a stop of the wheel and the antiroll bar. Rubber-metal bushings are modeled flexibly using nonlinear deformation characteristics. Simulation results are validated by experimental measurements of geometric parameters of real suspension.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta Polytechnica
ISSN
1210-2709
e-ISSN
—
Svazek periodika
56
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
9
Strana od-do
147-155
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-84966642211