Criterial Analysis of Gene Expression Sequences to Create the Objective Clustering Inductive Technology
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F17%3A43892884" target="_blank" >RIV/44555601:13440/17:43892884 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/ELNANO.2017.7939756" target="_blank" >http://dx.doi.org/10.1109/ELNANO.2017.7939756</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ELNANO.2017.7939756" target="_blank" >10.1109/ELNANO.2017.7939756</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Criterial Analysis of Gene Expression Sequences to Create the Objective Clustering Inductive Technology
Popis výsledku v původním jazyce
The paper presents the researches to determine the effectiveness of different criteria to estimate the complex biology objects clustering quality. The gene expression sequences of cancer patients were used as experimental data. The degree of the studied objects similarity was estimated by the comparison of the gene expression sequences profile using different metrics to estimate the objects proximity. The studies have shown that the best separating ability is obtained by using the correlation metric proximity of objects. Herewith the use of the CH criterion (Calinski-Harabasz) allows to get the most objective objects clustering by using simulated data. The presented research is focused mainly on the inductive model of the objective clustering, where the objects clustering is carried out concurrently on the two equal power subsets. In this case, the final decision about the objects grouping is accepted using the two subsets basing both on the internal clustering quality criteria estimating and the minimum value of the external criterion of clustering similarity.
Název v anglickém jazyce
Criterial Analysis of Gene Expression Sequences to Create the Objective Clustering Inductive Technology
Popis výsledku anglicky
The paper presents the researches to determine the effectiveness of different criteria to estimate the complex biology objects clustering quality. The gene expression sequences of cancer patients were used as experimental data. The degree of the studied objects similarity was estimated by the comparison of the gene expression sequences profile using different metrics to estimate the objects proximity. The studies have shown that the best separating ability is obtained by using the correlation metric proximity of objects. Herewith the use of the CH criterion (Calinski-Harabasz) allows to get the most objective objects clustering by using simulated data. The presented research is focused mainly on the inductive model of the objective clustering, where the objects clustering is carried out concurrently on the two equal power subsets. In this case, the final decision about the objects grouping is accepted using the two subsets basing both on the internal clustering quality criteria estimating and the minimum value of the external criterion of clustering similarity.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2017 IEEE 37TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND NANOTECHNOLOGY (ELNANO)
ISBN
978-1-5386-1701-4
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
5
Strana od-do
244-248
Název nakladatele
IEEE
Místo vydání
New York
Místo konání akce
Kyiv, UKRAINE
Datum konání akce
18. 4. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000403399800053