Implementation of the objective clustering inductive technology based on DBSCAN clustering algorithm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F17%3A43893057" target="_blank" >RIV/44555601:13440/17:43893057 - isvavai.cz</a>
Výsledek na webu
<a href="http://ieeexplore.ieee.org/document/8098832/" target="_blank" >http://ieeexplore.ieee.org/document/8098832/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/STC-CSIT.2017.8098832" target="_blank" >10.1109/STC-CSIT.2017.8098832</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Implementation of the objective clustering inductive technology based on DBSCAN clustering algorithm
Popis výsledku v původním jazyce
The paper presents the results of the research of the clustering algorithm DBSCAN practical implementation within the framework of the objective clustering inductive technology. As experimental, the data Aggregation and Compound of the Computing school of the East Finland University and the gene expression sequences of lung cancer patients of the database ArrayExpres were used. The architecture of the objective clustering model has been developed. The implementation of the model involves the parallel data clustering on the two equal power subsets, which include the same quantity of pairwise similar objects. The choice of the solution about parameters of the algorithm determination has been carried out based on the minimum value of the external clustering quality criterion, which calculated as normalized difference of the internal clustering quality criteria for the two subsets
Název v anglickém jazyce
Implementation of the objective clustering inductive technology based on DBSCAN clustering algorithm
Popis výsledku anglicky
The paper presents the results of the research of the clustering algorithm DBSCAN practical implementation within the framework of the objective clustering inductive technology. As experimental, the data Aggregation and Compound of the Computing school of the East Finland University and the gene expression sequences of lung cancer patients of the database ArrayExpres were used. The architecture of the objective clustering model has been developed. The implementation of the model involves the parallel data clustering on the two equal power subsets, which include the same quantity of pairwise similar objects. The choice of the solution about parameters of the algorithm determination has been carried out based on the minimum value of the external clustering quality criterion, which calculated as normalized difference of the internal clustering quality criteria for the two subsets
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Computer Science and Information Technology, Proceedings of the XII-th International Scientific and Technical Conference
ISBN
978-1-5386-1638-3
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
5
Strana od-do
479-484
Název nakladatele
Lviv Polytechnic National University
Místo vydání
Lviv
Místo konání akce
Lviv, Ukraine
Datum konání akce
5. 9. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—