Comparison Analysis of Clustering Quality Criteria Using Inductive Methods of Objective Clustering
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F20%3A43895694" target="_blank" >RIV/44555601:13440/20:43895694 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/book/10.1007/978-3-030-61656-4" target="_blank" >https://link.springer.com/book/10.1007/978-3-030-61656-4</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparison Analysis of Clustering Quality Criteria Using Inductive Methods of Objective Clustering
Popis výsledku v původním jazyce
In this paper, we present the results of the research concerning comparison analysis of both the internal and external clustering quality criteria for clustering various types of datasets using density-based DBSCAN clustering algorithm implemented based on Inductive Methods of Objective Clustering (IMOC). Implementation of the IMOC technique assumes division of the initial dataset into two similar subsets contained the same number of pairwise similar objects at the first step of this procedure implementation. Then, we have executed the data clustering on the obtained subsets concurrently within the range of the appropriate algorithm parameters variation with estimation of various types of clustering quality criteria (internal (IQC) and external (EQC)) at each step of this procedure implementation. The final solution concerning algorithm optimal parameters determination was made based on the maximum values of the complex balance criterion (CBC) which contains both the ICQ and ECQ as the components. The analysis of the simulation results has allowed us to evaluate the effectiveness of both the internal and external clustering quality criteria to determine the optimal parameters of clustering algorithm using various type of data. To our mind, the obtained results can allow us to increase the clustering procedure exactness and to decrease the reproducibility error.
Název v anglickém jazyce
Comparison Analysis of Clustering Quality Criteria Using Inductive Methods of Objective Clustering
Popis výsledku anglicky
In this paper, we present the results of the research concerning comparison analysis of both the internal and external clustering quality criteria for clustering various types of datasets using density-based DBSCAN clustering algorithm implemented based on Inductive Methods of Objective Clustering (IMOC). Implementation of the IMOC technique assumes division of the initial dataset into two similar subsets contained the same number of pairwise similar objects at the first step of this procedure implementation. Then, we have executed the data clustering on the obtained subsets concurrently within the range of the appropriate algorithm parameters variation with estimation of various types of clustering quality criteria (internal (IQC) and external (EQC)) at each step of this procedure implementation. The final solution concerning algorithm optimal parameters determination was made based on the maximum values of the complex balance criterion (CBC) which contains both the ICQ and ECQ as the components. The analysis of the simulation results has allowed us to evaluate the effectiveness of both the internal and external clustering quality criteria to determine the optimal parameters of clustering algorithm using various type of data. To our mind, the obtained results can allow us to increase the clustering procedure exactness and to decrease the reproducibility error.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Communications in Computer and Information Science
ISBN
978-3-030-61655-7
ISSN
1865-0929
e-ISSN
1865-0937
Počet stran výsledku
17
Strana od-do
150-166
Název nakladatele
Springer Nature Switzerland AG
Místo vydání
Switzerland
Místo konání akce
Lviv, Ukraine
Datum konání akce
21. 8. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—