A hybrid inductive model for gene expression data processing using spectral clustering
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F24%3A43898913" target="_blank" >RIV/44555601:13440/24:43898913 - isvavai.cz</a>
Výsledek na webu
<a href="https://ceur-ws.org/Vol-3892/paper2.pdf" target="_blank" >https://ceur-ws.org/Vol-3892/paper2.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A hybrid inductive model for gene expression data processing using spectral clustering
Popis výsledku v původním jazyce
One of the key directions in modern bioinformatics is the development of systems for diagnosing various diseases usinggene expression data. Clustering gene expression profiles is a critical step in disease diagnosis systems. In this study, wepropose a hybrid inductive model for clustering gene expression profiles using the spectral clustering algorithm. Theimplementation of this model aims to reduce reproducibility errors by serializing the data processing flow and optimizingclustering based on both internal and external quality criteria. The model is presented as a block diagram, and its practicalimplementation has demonstrated the high effectiveness of the proposed approach. The model's performance wasevaluated using a convolutional neural network. The experimental dataset consisted of gene expression values assigned tothe identified clusters. The simulation results indicate that the highest classification accuracy was achieved with a three-cluster structure, which corresponded to the highest balance between internal and external clustering quality criteria. Thesefindings create opportunities for enhancing existing gene expression clustering models through more precise tuning ofclustering algorithm hyperparameters, guided by the principles of inductive methods for analyzing complex systems
Název v anglickém jazyce
A hybrid inductive model for gene expression data processing using spectral clustering
Popis výsledku anglicky
One of the key directions in modern bioinformatics is the development of systems for diagnosing various diseases usinggene expression data. Clustering gene expression profiles is a critical step in disease diagnosis systems. In this study, wepropose a hybrid inductive model for clustering gene expression profiles using the spectral clustering algorithm. Theimplementation of this model aims to reduce reproducibility errors by serializing the data processing flow and optimizingclustering based on both internal and external quality criteria. The model is presented as a block diagram, and its practicalimplementation has demonstrated the high effectiveness of the proposed approach. The model's performance wasevaluated using a convolutional neural network. The experimental dataset consisted of gene expression values assigned tothe identified clusters. The simulation results indicate that the highest classification accuracy was achieved with a three-cluster structure, which corresponded to the highest balance between internal and external clustering quality criteria. Thesefindings create opportunities for enhancing existing gene expression clustering models through more precise tuning ofclustering algorithm hyperparameters, guided by the principles of inductive methods for analyzing complex systems
Klasifikace
Druh
W - Uspořádání workshopu
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Místo konání akce
Birmingham
Stát konání akce
GB - Spojené království Velké Británie a Severního Irska
Datum zahájení akce
—
Datum ukončení akce
—
Celkový počet účastníků
85
Počet zahraničních účastníků
64
Typ akce podle státní přísl. účastníků
WRD - Celosvětová akce