Adaptive population techniques in Evolution Algorithms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24210%2F19%3A00006778" target="_blank" >RIV/46747885:24210/19:00006778 - isvavai.cz</a>
Výsledek na webu
<a href="http://mme2019.ef.jcu.cz/files/conference_proceedings.pdf" target="_blank" >http://mme2019.ef.jcu.cz/files/conference_proceedings.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Adaptive population techniques in Evolution Algorithms
Popis výsledku v původním jazyce
Evolution algorithms are one of the most popular optimization techniques for its ability to solve wide field of general combinatorial problems. They are simple to implement and use as its mechanisms are logical and untestable due to its natural and common sense. However its optimization results as well as timespan are heavy dependent on setting searching parameters as crossover, mutation rates, population size etc. Setting those parameters requires intuition and experience and is also beneficial to change them during optimization as necessity to exploit and explore changes during optimization. Those are the reasons why nowadays research in the field of Evolutionary Computing is focusing more and more on the adaptive operator control. This article is focusing on part of adaptive parameter control which is known not only as responsible for quality of results but also for optimization time. The research is focusing on population sizing schemes together with selection and elimination procedures. It is reviewing known techniques and presenting original solution. Those techniques are then tested on known theoretical job shop scheduling problems and their efficiency is discussed. This paper was written with aid of students (Vignesh Babu Kuduva Gopinath and Jiří Bareš).
Název v anglickém jazyce
Adaptive population techniques in Evolution Algorithms
Popis výsledku anglicky
Evolution algorithms are one of the most popular optimization techniques for its ability to solve wide field of general combinatorial problems. They are simple to implement and use as its mechanisms are logical and untestable due to its natural and common sense. However its optimization results as well as timespan are heavy dependent on setting searching parameters as crossover, mutation rates, population size etc. Setting those parameters requires intuition and experience and is also beneficial to change them during optimization as necessity to exploit and explore changes during optimization. Those are the reasons why nowadays research in the field of Evolutionary Computing is focusing more and more on the adaptive operator control. This article is focusing on part of adaptive parameter control which is known not only as responsible for quality of results but also for optimization time. The research is focusing on population sizing schemes together with selection and elimination procedures. It is reviewing known techniques and presenting original solution. Those techniques are then tested on known theoretical job shop scheduling problems and their efficiency is discussed. This paper was written with aid of students (Vignesh Babu Kuduva Gopinath and Jiří Bareš).
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
37th International Conference on Mathematical Methods in Economics 2019
ISBN
978-80-7394-760-6
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
67-72
Název nakladatele
—
Místo vydání
České Budějovice
Místo konání akce
České Budějovice
Datum konání akce
1. 1. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000507570400010