A Comparative Study of the Data-Driven Stochastic Subspace Methods for Health Monitoring of Structures: A Bridge Case Study
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24210%2F20%3A00007633" target="_blank" >RIV/46747885:24210/20:00007633 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/46747885:24620/20:00007633
Výsledek na webu
<a href="https://www.mdpi.com/2076-3417/10/9/3132" target="_blank" >https://www.mdpi.com/2076-3417/10/9/3132</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/app10093132" target="_blank" >10.3390/app10093132</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Comparative Study of the Data-Driven Stochastic Subspace Methods for Health Monitoring of Structures: A Bridge Case Study
Popis výsledku v původním jazyce
Subspace system identification is a class of methods to estimate state-space model based on low rank characteristic of a system. State-space-based subspace system identification is the dominant subspace method for system identification in health monitoring of the civil structures. The weight matrices of canonical variate analysis (CVA), principle component (PC), and unweighted principle component (UPC), are used in stochastic subspace identification (SSI) to reduce the complexity and optimize the prediction in identification process. However, researches on evaluation and comparison of weight matrices’ performance are very limited. This study provides a detailed analysis on the effect of different weight matrices on robustness, accuracy, and computation efficiency. Two case studies including a lumped mass system and the response dataset of the Alamosa Canyon Bridge are used in this study. The results demonstrated that UPC algorithm had better performance compared to two other algorithms. It can be concluded that though dimensionality reduction in PC and CVA lingered the computation time, it has yielded an improved modal identification in PC.
Název v anglickém jazyce
A Comparative Study of the Data-Driven Stochastic Subspace Methods for Health Monitoring of Structures: A Bridge Case Study
Popis výsledku anglicky
Subspace system identification is a class of methods to estimate state-space model based on low rank characteristic of a system. State-space-based subspace system identification is the dominant subspace method for system identification in health monitoring of the civil structures. The weight matrices of canonical variate analysis (CVA), principle component (PC), and unweighted principle component (UPC), are used in stochastic subspace identification (SSI) to reduce the complexity and optimize the prediction in identification process. However, researches on evaluation and comparison of weight matrices’ performance are very limited. This study provides a detailed analysis on the effect of different weight matrices on robustness, accuracy, and computation efficiency. Two case studies including a lumped mass system and the response dataset of the Alamosa Canyon Bridge are used in this study. The results demonstrated that UPC algorithm had better performance compared to two other algorithms. It can be concluded that though dimensionality reduction in PC and CVA lingered the computation time, it has yielded an improved modal identification in PC.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
21100 - Other engineering and technologies
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_025%2F0007293" target="_blank" >EF16_025/0007293: Modulární platforma pro autonomní podvozky specializovaných elektrovozidel pro dopravu nákladu a zařízení</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Sciences-Basel
ISSN
2076-3417
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
18
Strana od-do
1-18
Kód UT WoS článku
000535541900145
EID výsledku v databázi Scopus
2-s2.0-85084682430