Influence of ea control parameters to optimization process of fjssp problem
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24210%2F20%3A00007861" target="_blank" >RIV/46747885:24210/20:00007861 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.ijsimm.com/Full_Papers/Fulltext2020/text19-3_519.pdf" target="_blank" >http://www.ijsimm.com/Full_Papers/Fulltext2020/text19-3_519.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2507/IJSIMM19-3-519" target="_blank" >10.2507/IJSIMM19-3-519</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Influence of ea control parameters to optimization process of fjssp problem
Popis výsledku v původním jazyce
The ability of Evolution Algorithms (EA) to find an optimal solution is usually given by various algorithm operators. Population size and a maximal number of generations are usually set base on available timespan. Setting selection and elimination methods together with crossover probability are usually based on intuition and sometimes are problem specific. That is the reason presented research is focusing on the approach of how to set elimination methods and crossover probability by the statistical approach to eliminate the necessity of experience and intuition. This article describes the scheduling model together with the used EA to solve the Flexible Job Shop Scheduling Problem (FJSSP). Statistical process control methods are applied as there is a designed experiment to find out the statistical significance of each parameter during solving one of the FJSSP hardest problems. Crossover and elimination statistical importance are analysed and suitable levels of them are suggested. The statistical approach as a possible methodology to set the mentioned parameters is then discussed. This paper was written with aid of students (František Manlig and Pandiyaraj Gnanasekar).
Název v anglickém jazyce
Influence of ea control parameters to optimization process of fjssp problem
Popis výsledku anglicky
The ability of Evolution Algorithms (EA) to find an optimal solution is usually given by various algorithm operators. Population size and a maximal number of generations are usually set base on available timespan. Setting selection and elimination methods together with crossover probability are usually based on intuition and sometimes are problem specific. That is the reason presented research is focusing on the approach of how to set elimination methods and crossover probability by the statistical approach to eliminate the necessity of experience and intuition. This article describes the scheduling model together with the used EA to solve the Flexible Job Shop Scheduling Problem (FJSSP). Statistical process control methods are applied as there is a designed experiment to find out the statistical significance of each parameter during solving one of the FJSSP hardest problems. Crossover and elimination statistical importance are analysed and suitable levels of them are suggested. The statistical approach as a possible methodology to set the mentioned parameters is then discussed. This paper was written with aid of students (František Manlig and Pandiyaraj Gnanasekar).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
21100 - Other engineering and technologies
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Simulation Modelling
ISSN
1726-4529
e-ISSN
—
Svazek periodika
19
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
AT - Rakouská republika
Počet stran výsledku
12
Strana od-do
387-398
Kód UT WoS článku
000571403200003
EID výsledku v databázi Scopus
2-s2.0-85095845895