Effects of applied strain, magnetic field, and temperature on the compressive stress relaxation behavior of magneto-sensitive elastomers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24210%2F24%3A00011538" target="_blank" >RIV/46747885:24210/24:00011538 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s11043-023-09654-4#Sec14" target="_blank" >https://link.springer.com/article/10.1007/s11043-023-09654-4#Sec14</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11043-023-09654-4" target="_blank" >10.1007/s11043-023-09654-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Effects of applied strain, magnetic field, and temperature on the compressive stress relaxation behavior of magneto-sensitive elastomers
Popis výsledku v původním jazyce
The paper investigates the short-term and long-term compressive stress relaxation behaviors of isotropic and anisotropic magneto-sensitive elastomers (MSEs) fabricated by filling carbonyl iron microparticles in a silicone rubber. The effects of applied compressive strain, magnetic field, and temperature on the short-term stress relaxation behavior of the isotropic and anisotropic MSEs were determined up to 1200 s. The stress relaxation behavior of the MSEs considerably depended on the applied compressive strain, magnetic field, and temperature. The stress of the MSEs increased with increasing compressive strain and magnetic field intensity but decreased with rising temperature. The isotropic MSE exhibited approximately linear elastic behavior, while the anisotropic MSE revealed nonlinear elastic characteristics. The compressive stress and relaxation modulus of the anisotropic MSE are considerably higher than those of the isotropic MSE. The compressive stress relaxation behavior of the isotropic and anisotropic MSEs was simulated using a fractional derivative viscoelastic Kelvin-Voigt model. The model parameters were identified by fitting the relaxation modulus to the short-term measured data of the MSEs. The compressive stress estimated from the studied model with fitted parameters was in excellent agreement with the measured data of the MSEs at various compressive strains, magnetic fields, and temperatures. The model was then used to estimate the long-term stress relaxation of the MSEs. An excellent agreement between long-term predicted results and experimental data of the MSEs has been reached when fitting the model to the medium-term experimental data.
Název v anglickém jazyce
Effects of applied strain, magnetic field, and temperature on the compressive stress relaxation behavior of magneto-sensitive elastomers
Popis výsledku anglicky
The paper investigates the short-term and long-term compressive stress relaxation behaviors of isotropic and anisotropic magneto-sensitive elastomers (MSEs) fabricated by filling carbonyl iron microparticles in a silicone rubber. The effects of applied compressive strain, magnetic field, and temperature on the short-term stress relaxation behavior of the isotropic and anisotropic MSEs were determined up to 1200 s. The stress relaxation behavior of the MSEs considerably depended on the applied compressive strain, magnetic field, and temperature. The stress of the MSEs increased with increasing compressive strain and magnetic field intensity but decreased with rising temperature. The isotropic MSE exhibited approximately linear elastic behavior, while the anisotropic MSE revealed nonlinear elastic characteristics. The compressive stress and relaxation modulus of the anisotropic MSE are considerably higher than those of the isotropic MSE. The compressive stress relaxation behavior of the isotropic and anisotropic MSEs was simulated using a fractional derivative viscoelastic Kelvin-Voigt model. The model parameters were identified by fitting the relaxation modulus to the short-term measured data of the MSEs. The compressive stress estimated from the studied model with fitted parameters was in excellent agreement with the measured data of the MSEs at various compressive strains, magnetic fields, and temperatures. The model was then used to estimate the long-term stress relaxation of the MSEs. An excellent agreement between long-term predicted results and experimental data of the MSEs has been reached when fitting the model to the medium-term experimental data.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20500 - Materials engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000843" target="_blank" >EF16_019/0000843: Hybridní materiály pro hierarchické struktury</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mechanics of Time-Dependent Materials
ISSN
1385-2000
e-ISSN
—
Svazek periodika
—
Číslo periodika v rámci svazku
JAN 2
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
20
Strana od-do
917-936
Kód UT WoS článku
001132583500001
EID výsledku v databázi Scopus
2-s2.0-85181009479