Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Machining performance of TiO2 embedded-glass fiber reinforced composites with snake optimizer

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24210%2F24%3A00011994" target="_blank" >RIV/46747885:24210/24:00011994 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/46747885:24620/24:00011994

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0263224124001374?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0263224124001374?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.measurement.2024.114253" target="_blank" >10.1016/j.measurement.2024.114253</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Machining performance of TiO2 embedded-glass fiber reinforced composites with snake optimizer

  • Popis výsledku v původním jazyce

    In this study, nano titanium dioxide-filled glass fiber reinforced polymer composites (nTiO2-GFRPC) are developed, and their surface roughness and machinability (cutting force) performance are evaluated with a newly evolved metaheuristic snake optimizer. A hybrid grey theory-snake optimizer (GT-SO) algorithm is developed where grey theory combines output responses (surface roughness and cutting force) into a single objective function, and the snake optimizer finds the optimal results. The novelty of this study is the compatibility of two different varieties of machine learning algorithms into one and the combination of two different responses (surface roughness and cutting force) into a single objective function. Process variables (nanoparticles amount, fiber volume fraction and feed rate), their interaction and their influence are designed by Taguchi orthogonal array and their optimization is performed by GT-SO. The optimal results are achieved with 5 % TiO2 (Weight %), 20 % fiber volume fraction and 75 mm/min feed rate. The optimum surface roughness and cutting force results were 1.49 μm and 1332.93 N, respectively. The validation of results shows that the output performance improved from 0.8929 to 0.9712, indicating the performance of the developed GT-SO with an 8.06 % error. The developed method was compared with other metaheuristics algorithms to reveal its potential for adaptation in composite material‘s cutting, milling, shaping and other machining characteristics. The results also confirm that TiO2 amount is a highly influencing factor for surface roughness calculations.

  • Název v anglickém jazyce

    Machining performance of TiO2 embedded-glass fiber reinforced composites with snake optimizer

  • Popis výsledku anglicky

    In this study, nano titanium dioxide-filled glass fiber reinforced polymer composites (nTiO2-GFRPC) are developed, and their surface roughness and machinability (cutting force) performance are evaluated with a newly evolved metaheuristic snake optimizer. A hybrid grey theory-snake optimizer (GT-SO) algorithm is developed where grey theory combines output responses (surface roughness and cutting force) into a single objective function, and the snake optimizer finds the optimal results. The novelty of this study is the compatibility of two different varieties of machine learning algorithms into one and the combination of two different responses (surface roughness and cutting force) into a single objective function. Process variables (nanoparticles amount, fiber volume fraction and feed rate), their interaction and their influence are designed by Taguchi orthogonal array and their optimization is performed by GT-SO. The optimal results are achieved with 5 % TiO2 (Weight %), 20 % fiber volume fraction and 75 mm/min feed rate. The optimum surface roughness and cutting force results were 1.49 μm and 1332.93 N, respectively. The validation of results shows that the output performance improved from 0.8929 to 0.9712, indicating the performance of the developed GT-SO with an 8.06 % error. The developed method was compared with other metaheuristics algorithms to reveal its potential for adaptation in composite material‘s cutting, milling, shaping and other machining characteristics. The results also confirm that TiO2 amount is a highly influencing factor for surface roughness calculations.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    21100 - Other engineering and technologies

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_025%2F0007293" target="_blank" >EF16_025/0007293: Modulární platforma pro autonomní podvozky specializovaných elektrovozidel pro dopravu nákladu a zařízení</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    MEASUREMENT

  • ISSN

    0263-2241

  • e-ISSN

  • Svazek periodika

    227

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    16

  • Strana od-do

    1-16

  • Kód UT WoS článku

    001182593400001

  • EID výsledku v databázi Scopus

    2-s2.0-85184516764