Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Design and optimization of machinability of ZnO embedded-glass fiber reinforced polymer composites with a modified white shark optimizer

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24620%2F24%3A00011422" target="_blank" >RIV/46747885:24620/24:00011422 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0957417423019760" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0957417423019760</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.eswa.2023.121474" target="_blank" >10.1016/j.eswa.2023.121474</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Design and optimization of machinability of ZnO embedded-glass fiber reinforced polymer composites with a modified white shark optimizer

  • Popis výsledku v původním jazyce

    This study investigates the role of a newly developed metaheuristic algorithm on machinability (cutting force) and surface roughness of nano zinc oxide embedded glass fiber reinforced polymer composites (nZnO-GFRPC). A hybrid grey theory-white shark optimizer (Grey-WSO) algorithm is developed where grey theory combines output responses (surface roughness and cutting force) into a single objective function, and white shark is used to find the optimal responses. The novelty of the developed method is the compatibility of two different varieties of machine learning algorithms into one and the combination of two different responses, i.e., cutting force and surface roughness, into a single objective function. The influence of parameters, i.e., nanoparticles amount, fiber volume fraction and feed rate, is designed by Taguchi orthogonal array and their optimization is performed by Grey-WSO. The optimal results are achieved with 1 % ZnO (Weight %), 75 mm/min feed rate and 6.031 % fiber volume fraction, respectively. The optimum cutting force and surface roughness results were 197.64 N and 1.6765 μm, respectively. The validation of results shows that the output performance improved from 0.9414 to 0.9514, indicating the performance of the developed Grey-WSO with a 1.06% error. The developed algorithm was compared with other metaheuristics algorithms to demonstrate its potential to adopt in cutting, milling, shaping and other machining characteristics of composite materials. The results also confirm that nanoparticles amount is a highly influencing factor for surface roughness calculations.

  • Název v anglickém jazyce

    Design and optimization of machinability of ZnO embedded-glass fiber reinforced polymer composites with a modified white shark optimizer

  • Popis výsledku anglicky

    This study investigates the role of a newly developed metaheuristic algorithm on machinability (cutting force) and surface roughness of nano zinc oxide embedded glass fiber reinforced polymer composites (nZnO-GFRPC). A hybrid grey theory-white shark optimizer (Grey-WSO) algorithm is developed where grey theory combines output responses (surface roughness and cutting force) into a single objective function, and white shark is used to find the optimal responses. The novelty of the developed method is the compatibility of two different varieties of machine learning algorithms into one and the combination of two different responses, i.e., cutting force and surface roughness, into a single objective function. The influence of parameters, i.e., nanoparticles amount, fiber volume fraction and feed rate, is designed by Taguchi orthogonal array and their optimization is performed by Grey-WSO. The optimal results are achieved with 1 % ZnO (Weight %), 75 mm/min feed rate and 6.031 % fiber volume fraction, respectively. The optimum cutting force and surface roughness results were 197.64 N and 1.6765 μm, respectively. The validation of results shows that the output performance improved from 0.9414 to 0.9514, indicating the performance of the developed Grey-WSO with a 1.06% error. The developed algorithm was compared with other metaheuristics algorithms to demonstrate its potential to adopt in cutting, milling, shaping and other machining characteristics of composite materials. The results also confirm that nanoparticles amount is a highly influencing factor for surface roughness calculations.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_025%2F0007293" target="_blank" >EF16_025/0007293: Modulární platforma pro autonomní podvozky specializovaných elektrovozidel pro dopravu nákladu a zařízení</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Expert Systems with Applications

  • ISSN

    0957-4174

  • e-ISSN

  • Svazek periodika

    237

  • Číslo periodika v rámci svazku

    MAR 1

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    12

  • Strana od-do

  • Kód UT WoS článku

    001079083200001

  • EID výsledku v databázi Scopus

    2-s2.0-85170637057