Design and optimization of machinability of ZnO embedded-glass fiber reinforced polymer composites with a modified white shark optimizer
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24620%2F24%3A00011422" target="_blank" >RIV/46747885:24620/24:00011422 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0957417423019760" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0957417423019760</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.eswa.2023.121474" target="_blank" >10.1016/j.eswa.2023.121474</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Design and optimization of machinability of ZnO embedded-glass fiber reinforced polymer composites with a modified white shark optimizer
Popis výsledku v původním jazyce
This study investigates the role of a newly developed metaheuristic algorithm on machinability (cutting force) and surface roughness of nano zinc oxide embedded glass fiber reinforced polymer composites (nZnO-GFRPC). A hybrid grey theory-white shark optimizer (Grey-WSO) algorithm is developed where grey theory combines output responses (surface roughness and cutting force) into a single objective function, and white shark is used to find the optimal responses. The novelty of the developed method is the compatibility of two different varieties of machine learning algorithms into one and the combination of two different responses, i.e., cutting force and surface roughness, into a single objective function. The influence of parameters, i.e., nanoparticles amount, fiber volume fraction and feed rate, is designed by Taguchi orthogonal array and their optimization is performed by Grey-WSO. The optimal results are achieved with 1 % ZnO (Weight %), 75 mm/min feed rate and 6.031 % fiber volume fraction, respectively. The optimum cutting force and surface roughness results were 197.64 N and 1.6765 μm, respectively. The validation of results shows that the output performance improved from 0.9414 to 0.9514, indicating the performance of the developed Grey-WSO with a 1.06% error. The developed algorithm was compared with other metaheuristics algorithms to demonstrate its potential to adopt in cutting, milling, shaping and other machining characteristics of composite materials. The results also confirm that nanoparticles amount is a highly influencing factor for surface roughness calculations.
Název v anglickém jazyce
Design and optimization of machinability of ZnO embedded-glass fiber reinforced polymer composites with a modified white shark optimizer
Popis výsledku anglicky
This study investigates the role of a newly developed metaheuristic algorithm on machinability (cutting force) and surface roughness of nano zinc oxide embedded glass fiber reinforced polymer composites (nZnO-GFRPC). A hybrid grey theory-white shark optimizer (Grey-WSO) algorithm is developed where grey theory combines output responses (surface roughness and cutting force) into a single objective function, and white shark is used to find the optimal responses. The novelty of the developed method is the compatibility of two different varieties of machine learning algorithms into one and the combination of two different responses, i.e., cutting force and surface roughness, into a single objective function. The influence of parameters, i.e., nanoparticles amount, fiber volume fraction and feed rate, is designed by Taguchi orthogonal array and their optimization is performed by Grey-WSO. The optimal results are achieved with 1 % ZnO (Weight %), 75 mm/min feed rate and 6.031 % fiber volume fraction, respectively. The optimum cutting force and surface roughness results were 197.64 N and 1.6765 μm, respectively. The validation of results shows that the output performance improved from 0.9414 to 0.9514, indicating the performance of the developed Grey-WSO with a 1.06% error. The developed algorithm was compared with other metaheuristics algorithms to demonstrate its potential to adopt in cutting, milling, shaping and other machining characteristics of composite materials. The results also confirm that nanoparticles amount is a highly influencing factor for surface roughness calculations.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_025%2F0007293" target="_blank" >EF16_025/0007293: Modulární platforma pro autonomní podvozky specializovaných elektrovozidel pro dopravu nákladu a zařízení</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Expert Systems with Applications
ISSN
0957-4174
e-ISSN
—
Svazek periodika
237
Číslo periodika v rámci svazku
MAR 1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
—
Kód UT WoS článku
001079083200001
EID výsledku v databázi Scopus
2-s2.0-85170637057