Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Experimental study and numerical simulation of short- and long-term shear stress relaxation behaviors of magnetorheological elastomers

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24210%2F25%3A00013152" target="_blank" >RIV/46747885:24210/25:00013152 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s11043-024-09760-x" target="_blank" >https://link.springer.com/article/10.1007/s11043-024-09760-x</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11043-024-09760-x" target="_blank" >10.1007/s11043-024-09760-x</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Experimental study and numerical simulation of short- and long-term shear stress relaxation behaviors of magnetorheological elastomers

  • Popis výsledku v původním jazyce

    An experimental study and numerical simulation of short-term and long-term shear stress relaxation behaviors of non-aligned and aligned magnetorheological elastomers (MREs) were investigated. The aligned MRE was created by aligning micro-size carbonyl iron particles in chains in silicon rubber using an external magnetic field during the curing process, while the non-aligned MRE was fabricated without applying a magnetic field. Effects of permanent magnetic fields on the shear stress relaxation of the non-aligned and aligned MREs were examined using the double-lap shear stress relaxation test with a short-term period of 1200 s and a long-term period of 1.08 x 106 s. The shear stress and relaxation modulus of the non-aligned and aligned MREs increased considerably with the rise of magnetic flux density to about 500 mT and then enhanced slightly above 500 mT. The shear stress and relaxation modulus of the aligned MRE are considerably higher than those of the non-aligned one. The shear stress relaxation of the non-aligned and aligned MREs was numerically simulated using the fractional derivative viscoelastic Kelvin–Voigt model. The model parameters were identified by fitting the relaxation modulus to the short-term measured data of the MREs. The shear stress estimated from the investigated model with fitted parameters was in excellent agreement with the short-term experimental data of the MREs measured under different magnetic fields. Besides, the short-term model-fitted parameters were used to predict the long-term shear stress relaxation of the non-aligned and aligned MREs. The largest difference between model-predicted and long-term measured results for the non-aligned and aligned MREs is less than 1%. Therefore, the studied model can be used to predict the long-term shear stress relaxation of the non-aligned and aligned MREs.

  • Název v anglickém jazyce

    Experimental study and numerical simulation of short- and long-term shear stress relaxation behaviors of magnetorheological elastomers

  • Popis výsledku anglicky

    An experimental study and numerical simulation of short-term and long-term shear stress relaxation behaviors of non-aligned and aligned magnetorheological elastomers (MREs) were investigated. The aligned MRE was created by aligning micro-size carbonyl iron particles in chains in silicon rubber using an external magnetic field during the curing process, while the non-aligned MRE was fabricated without applying a magnetic field. Effects of permanent magnetic fields on the shear stress relaxation of the non-aligned and aligned MREs were examined using the double-lap shear stress relaxation test with a short-term period of 1200 s and a long-term period of 1.08 x 106 s. The shear stress and relaxation modulus of the non-aligned and aligned MREs increased considerably with the rise of magnetic flux density to about 500 mT and then enhanced slightly above 500 mT. The shear stress and relaxation modulus of the aligned MRE are considerably higher than those of the non-aligned one. The shear stress relaxation of the non-aligned and aligned MREs was numerically simulated using the fractional derivative viscoelastic Kelvin–Voigt model. The model parameters were identified by fitting the relaxation modulus to the short-term measured data of the MREs. The shear stress estimated from the investigated model with fitted parameters was in excellent agreement with the short-term experimental data of the MREs measured under different magnetic fields. Besides, the short-term model-fitted parameters were used to predict the long-term shear stress relaxation of the non-aligned and aligned MREs. The largest difference between model-predicted and long-term measured results for the non-aligned and aligned MREs is less than 1%. Therefore, the studied model can be used to predict the long-term shear stress relaxation of the non-aligned and aligned MREs.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20500 - Materials engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000843" target="_blank" >EF16_019/0000843: Hybridní materiály pro hierarchické struktury</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2025

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Mechanics of Time-Dependent Materials

  • ISSN

    1385-2000

  • e-ISSN

  • Svazek periodika

    29

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    17

  • Strana od-do

  • Kód UT WoS článku

    001404975200001

  • EID výsledku v databázi Scopus

    2-s2.0-85218194188