Experimental study and numerical simulation of short- and long-term shear stress relaxation behaviors of magnetorheological elastomers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24210%2F25%3A00013152" target="_blank" >RIV/46747885:24210/25:00013152 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s11043-024-09760-x" target="_blank" >https://link.springer.com/article/10.1007/s11043-024-09760-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11043-024-09760-x" target="_blank" >10.1007/s11043-024-09760-x</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Experimental study and numerical simulation of short- and long-term shear stress relaxation behaviors of magnetorheological elastomers
Popis výsledku v původním jazyce
An experimental study and numerical simulation of short-term and long-term shear stress relaxation behaviors of non-aligned and aligned magnetorheological elastomers (MREs) were investigated. The aligned MRE was created by aligning micro-size carbonyl iron particles in chains in silicon rubber using an external magnetic field during the curing process, while the non-aligned MRE was fabricated without applying a magnetic field. Effects of permanent magnetic fields on the shear stress relaxation of the non-aligned and aligned MREs were examined using the double-lap shear stress relaxation test with a short-term period of 1200 s and a long-term period of 1.08 x 106 s. The shear stress and relaxation modulus of the non-aligned and aligned MREs increased considerably with the rise of magnetic flux density to about 500 mT and then enhanced slightly above 500 mT. The shear stress and relaxation modulus of the aligned MRE are considerably higher than those of the non-aligned one. The shear stress relaxation of the non-aligned and aligned MREs was numerically simulated using the fractional derivative viscoelastic Kelvin–Voigt model. The model parameters were identified by fitting the relaxation modulus to the short-term measured data of the MREs. The shear stress estimated from the investigated model with fitted parameters was in excellent agreement with the short-term experimental data of the MREs measured under different magnetic fields. Besides, the short-term model-fitted parameters were used to predict the long-term shear stress relaxation of the non-aligned and aligned MREs. The largest difference between model-predicted and long-term measured results for the non-aligned and aligned MREs is less than 1%. Therefore, the studied model can be used to predict the long-term shear stress relaxation of the non-aligned and aligned MREs.
Název v anglickém jazyce
Experimental study and numerical simulation of short- and long-term shear stress relaxation behaviors of magnetorheological elastomers
Popis výsledku anglicky
An experimental study and numerical simulation of short-term and long-term shear stress relaxation behaviors of non-aligned and aligned magnetorheological elastomers (MREs) were investigated. The aligned MRE was created by aligning micro-size carbonyl iron particles in chains in silicon rubber using an external magnetic field during the curing process, while the non-aligned MRE was fabricated without applying a magnetic field. Effects of permanent magnetic fields on the shear stress relaxation of the non-aligned and aligned MREs were examined using the double-lap shear stress relaxation test with a short-term period of 1200 s and a long-term period of 1.08 x 106 s. The shear stress and relaxation modulus of the non-aligned and aligned MREs increased considerably with the rise of magnetic flux density to about 500 mT and then enhanced slightly above 500 mT. The shear stress and relaxation modulus of the aligned MRE are considerably higher than those of the non-aligned one. The shear stress relaxation of the non-aligned and aligned MREs was numerically simulated using the fractional derivative viscoelastic Kelvin–Voigt model. The model parameters were identified by fitting the relaxation modulus to the short-term measured data of the MREs. The shear stress estimated from the investigated model with fitted parameters was in excellent agreement with the short-term experimental data of the MREs measured under different magnetic fields. Besides, the short-term model-fitted parameters were used to predict the long-term shear stress relaxation of the non-aligned and aligned MREs. The largest difference between model-predicted and long-term measured results for the non-aligned and aligned MREs is less than 1%. Therefore, the studied model can be used to predict the long-term shear stress relaxation of the non-aligned and aligned MREs.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20500 - Materials engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000843" target="_blank" >EF16_019/0000843: Hybridní materiály pro hierarchické struktury</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2025
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mechanics of Time-Dependent Materials
ISSN
1385-2000
e-ISSN
—
Svazek periodika
29
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
17
Strana od-do
—
Kód UT WoS článku
001404975200001
EID výsledku v databázi Scopus
2-s2.0-85218194188