Performance Bounds for Complex-Valued Independent Vector Analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F20%3A00007818" target="_blank" >RIV/46747885:24220/20:00007818 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985556:_____/20:00531483 RIV/68407700:21340/20:00344852
Výsledek na webu
<a href="https://asap.ite.tul.cz/wp-content/uploads/sites/3/2020/07/Complex_IVA.pdf" target="_blank" >https://asap.ite.tul.cz/wp-content/uploads/sites/3/2020/07/Complex_IVA.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TSP.2020.3009507" target="_blank" >10.1109/TSP.2020.3009507</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Performance Bounds for Complex-Valued Independent Vector Analysis
Popis výsledku v původním jazyce
Independent Vector Analysis (IVA) is a method for joint Blind Source Separation of multiple datasets with wide area of applications including audio source separation, biomedical data analysis, etc. In this paper, identification conditions and Cramer-Rao Lower Bound (CRLB) on the achievable accuracy are derived for the complex-valued case involving circular and non-circular signals and correlated and uncorrelated datasets. The identification conditions describe when independent sources can be separated from their linear mixture in the statistically consistent manner. The CRLB shows how non-Gaussianty, non-circularity of sources and statistical dependence between datasets influence the attainable separation accuracy. Examples presented in the experimental part confirm the validity of the CRLB. Also, they show certain gap between the attainable accuracy and performance of state-of-the-art algorithms, especially, in case of highly non-circular signals. Hence, there is a room for possible improvements.
Název v anglickém jazyce
Performance Bounds for Complex-Valued Independent Vector Analysis
Popis výsledku anglicky
Independent Vector Analysis (IVA) is a method for joint Blind Source Separation of multiple datasets with wide area of applications including audio source separation, biomedical data analysis, etc. In this paper, identification conditions and Cramer-Rao Lower Bound (CRLB) on the achievable accuracy are derived for the complex-valued case involving circular and non-circular signals and correlated and uncorrelated datasets. The identification conditions describe when independent sources can be separated from their linear mixture in the statistically consistent manner. The CRLB shows how non-Gaussianty, non-circularity of sources and statistical dependence between datasets influence the attainable separation accuracy. Examples presented in the experimental part confirm the validity of the CRLB. Also, they show certain gap between the attainable accuracy and performance of state-of-the-art algorithms, especially, in case of highly non-circular signals. Hence, there is a room for possible improvements.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Signal Processing
ISSN
1053-587X
e-ISSN
—
Svazek periodika
68
Číslo periodika v rámci svazku
2020
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
4258-4267
Kód UT WoS článku
000556759700004
EID výsledku v databázi Scopus
2-s2.0-85089296542