Autonomous Vehicle Tracking Based on Non-Linear Model Predictive Control Approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F22%3A00010092" target="_blank" >RIV/46747885:24220/22:00010092 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/46747885:24620/22:00010092
Výsledek na webu
<a href="https://www.igi-global.com/chapter/autonomous-vehicle-tracking-based-on-non-linear-model-predictive-control-approach/302063" target="_blank" >https://www.igi-global.com/chapter/autonomous-vehicle-tracking-based-on-non-linear-model-predictive-control-approach/302063</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4018/978-1-7998-9012-6.ch005" target="_blank" >10.4018/978-1-7998-9012-6.ch005</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Autonomous Vehicle Tracking Based on Non-Linear Model Predictive Control Approach
Popis výsledku v původním jazyce
Autonomous driving vehicles are developing rapidly; however, the control systems for autonomous driving vehicles tracking smoothly in high speed are still challenging. This chapter develops non-linear model predictive control (NMPC) schemes for controlling autonomous driving vehicles tracking on feasible trajectories. The optimal control action for vehicle speed and steering velocity is generated online using NMPC optimizer subject to vehicle dynamic and physical constraints as well as the surrounding obstacles and the environmental side-slipping conditions. NMPC subject to softened state constraints provides a better possibility for the optimizer to generate a feasible solution as real-time subject to online dynamic constraints and to maintain the vehicle stability. Different parameters of NMPC are simulated and analysed to see the relationships between the NMPC horizon prediction length and the weighting values. Results show that the NMPC can control the vehicle tracking exactly on different trajectories with minimum tracking errors and with high comfortability.
Název v anglickém jazyce
Autonomous Vehicle Tracking Based on Non-Linear Model Predictive Control Approach
Popis výsledku anglicky
Autonomous driving vehicles are developing rapidly; however, the control systems for autonomous driving vehicles tracking smoothly in high speed are still challenging. This chapter develops non-linear model predictive control (NMPC) schemes for controlling autonomous driving vehicles tracking on feasible trajectories. The optimal control action for vehicle speed and steering velocity is generated online using NMPC optimizer subject to vehicle dynamic and physical constraints as well as the surrounding obstacles and the environmental side-slipping conditions. NMPC subject to softened state constraints provides a better possibility for the optimizer to generate a feasible solution as real-time subject to online dynamic constraints and to maintain the vehicle stability. Different parameters of NMPC are simulated and analysed to see the relationships between the NMPC horizon prediction length and the weighting values. Results show that the NMPC can control the vehicle tracking exactly on different trajectories with minimum tracking errors and with high comfortability.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_025%2F0007293" target="_blank" >EF16_025/0007293: Modulární platforma pro autonomní podvozky specializovaných elektrovozidel pro dopravu nákladu a zařízení</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Applications of Computational Science in Artificial Intelligence
ISBN
978-1799890140
Počet stran výsledku
58
Strana od-do
74-131
Počet stran knihy
284
Název nakladatele
IGI Global
Místo vydání
—
Kód UT WoS kapitoly
—