An intelligent decision support system for groundwater supply management and electromechanical infrastructure controls
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F24%3A00011772" target="_blank" >RIV/46747885:24220/24:00011772 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/46747885:24620/24:00011772
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2405844024010673" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2405844024010673</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.heliyon.2024.e25036" target="_blank" >10.1016/j.heliyon.2024.e25036</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An intelligent decision support system for groundwater supply management and electromechanical infrastructure controls
Popis výsledku v původním jazyce
This study presents an intelligent Decision Support System (DSS) aimed at bridging the theoretical-practical gap in groundwater management. The ongoing demand for sophisticated systems capable of interpreting extensive data to inform sustainable groundwater decision-making underscores the critical nature of this research. To meet this challenge, telemetry data from six randomly selected wells were used to establish a comprehensive database of groundwater pumping parameters, including flow rate, pressure, and current intensity. Statistical analysis of these parameters led to the determination of threshold values for critical factors such as water pressure and electrical current. Additionally, a soft sensor was developed using a Random Forest (RF) machine learning algorithm, enabling real-time forecasting of key variables. This was achieved by continuously comparing live telemetry data to pump design specifications and results from regular field testing. The proposed machine learning model ensures robust empirical monitoring of well and pump health. Furthermore, expert operational knowledge from water management professionals, gathered through a Classical Delphi (CD) technique, was seamlessly integrated. This collective expertise culminated in a data-driven framework for sustainable groundwater facilities monitoring. In conclusion, this innovative DSS not only addresses the theory-application gap but also leverages the power of data analytics and expert knowledge to provide high-precision online insights, thereby optimizing groundwater management practices.
Název v anglickém jazyce
An intelligent decision support system for groundwater supply management and electromechanical infrastructure controls
Popis výsledku anglicky
This study presents an intelligent Decision Support System (DSS) aimed at bridging the theoretical-practical gap in groundwater management. The ongoing demand for sophisticated systems capable of interpreting extensive data to inform sustainable groundwater decision-making underscores the critical nature of this research. To meet this challenge, telemetry data from six randomly selected wells were used to establish a comprehensive database of groundwater pumping parameters, including flow rate, pressure, and current intensity. Statistical analysis of these parameters led to the determination of threshold values for critical factors such as water pressure and electrical current. Additionally, a soft sensor was developed using a Random Forest (RF) machine learning algorithm, enabling real-time forecasting of key variables. This was achieved by continuously comparing live telemetry data to pump design specifications and results from regular field testing. The proposed machine learning model ensures robust empirical monitoring of well and pump health. Furthermore, expert operational knowledge from water management professionals, gathered through a Classical Delphi (CD) technique, was seamlessly integrated. This collective expertise culminated in a data-driven framework for sustainable groundwater facilities monitoring. In conclusion, this innovative DSS not only addresses the theory-application gap but also leverages the power of data analytics and expert knowledge to provide high-precision online insights, thereby optimizing groundwater management practices.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10700 - Other natural sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2023066" target="_blank" >LM2023066: Nanomateriály a nanotechnologie pro ochranu životního prostředí a udržitelnou budoucnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Heliyon
ISSN
2405-8440
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
28
Strana od-do
—
Kód UT WoS článku
001175784500001
EID výsledku v databázi Scopus
2-s2.0-85183482184