Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

An intelligent decision support system for groundwater supply management and electromechanical infrastructure controls

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F24%3A00011772" target="_blank" >RIV/46747885:24220/24:00011772 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/46747885:24620/24:00011772

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2405844024010673" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2405844024010673</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.heliyon.2024.e25036" target="_blank" >10.1016/j.heliyon.2024.e25036</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    An intelligent decision support system for groundwater supply management and electromechanical infrastructure controls

  • Popis výsledku v původním jazyce

    This study presents an intelligent Decision Support System (DSS) aimed at bridging the theoretical-practical gap in groundwater management. The ongoing demand for sophisticated systems capable of interpreting extensive data to inform sustainable groundwater decision-making underscores the critical nature of this research. To meet this challenge, telemetry data from six randomly selected wells were used to establish a comprehensive database of groundwater pumping parameters, including flow rate, pressure, and current intensity. Statistical analysis of these parameters led to the determination of threshold values for critical factors such as water pressure and electrical current. Additionally, a soft sensor was developed using a Random Forest (RF) machine learning algorithm, enabling real-time forecasting of key variables. This was achieved by continuously comparing live telemetry data to pump design specifications and results from regular field testing. The proposed machine learning model ensures robust empirical monitoring of well and pump health. Furthermore, expert operational knowledge from water management professionals, gathered through a Classical Delphi (CD) technique, was seamlessly integrated. This collective expertise culminated in a data-driven framework for sustainable groundwater facilities monitoring. In conclusion, this innovative DSS not only addresses the theory-application gap but also leverages the power of data analytics and expert knowledge to provide high-precision online insights, thereby optimizing groundwater management practices.

  • Název v anglickém jazyce

    An intelligent decision support system for groundwater supply management and electromechanical infrastructure controls

  • Popis výsledku anglicky

    This study presents an intelligent Decision Support System (DSS) aimed at bridging the theoretical-practical gap in groundwater management. The ongoing demand for sophisticated systems capable of interpreting extensive data to inform sustainable groundwater decision-making underscores the critical nature of this research. To meet this challenge, telemetry data from six randomly selected wells were used to establish a comprehensive database of groundwater pumping parameters, including flow rate, pressure, and current intensity. Statistical analysis of these parameters led to the determination of threshold values for critical factors such as water pressure and electrical current. Additionally, a soft sensor was developed using a Random Forest (RF) machine learning algorithm, enabling real-time forecasting of key variables. This was achieved by continuously comparing live telemetry data to pump design specifications and results from regular field testing. The proposed machine learning model ensures robust empirical monitoring of well and pump health. Furthermore, expert operational knowledge from water management professionals, gathered through a Classical Delphi (CD) technique, was seamlessly integrated. This collective expertise culminated in a data-driven framework for sustainable groundwater facilities monitoring. In conclusion, this innovative DSS not only addresses the theory-application gap but also leverages the power of data analytics and expert knowledge to provide high-precision online insights, thereby optimizing groundwater management practices.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10700 - Other natural sciences

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LM2023066" target="_blank" >LM2023066: Nanomateriály a nanotechnologie pro ochranu životního prostředí a udržitelnou budoucnost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Heliyon

  • ISSN

    2405-8440

  • e-ISSN

  • Svazek periodika

    10

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    28

  • Strana od-do

  • Kód UT WoS článku

    001175784500001

  • EID výsledku v databázi Scopus

    2-s2.0-85183482184