Assessment of the Impact of Traffic Police Preventive Interventions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24310%2F17%3A00004208" target="_blank" >RIV/46747885:24310/17:00004208 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Assessment of the Impact of Traffic Police Preventive Interventions
Popis výsledku v původním jazyce
Free publicly available datasets describing weather and traffic accidents in the Czech Republic have been used for the training of a feed-forward neural network so that it could predict the level of the number of traffic accidents and their cost from weather, weekday, and month. The neural network learns the data for each of the 14 Czech regions separately and also the idea of cross-validation is utilized. The data for each learning task have been separated into Training Set, Development Test Set, and Test Set. Then a statistically significant number of experiments with neural network to get the accuracy of the prediction of the Test Set that happens when the accuracy of the Development Test Set is maximized have been conducted. The aim of the research is to learn whether this methodology can statistically detect any significant difference of the accuracy of prediction between the Test Set formed from days with interventions reported by the Czech Police and the randomly selected Test Set using the assumption that the neural network learns dependencies not affected by preventive interventions.
Název v anglickém jazyce
Assessment of the Impact of Traffic Police Preventive Interventions
Popis výsledku anglicky
Free publicly available datasets describing weather and traffic accidents in the Czech Republic have been used for the training of a feed-forward neural network so that it could predict the level of the number of traffic accidents and their cost from weather, weekday, and month. The neural network learns the data for each of the 14 Czech regions separately and also the idea of cross-validation is utilized. The data for each learning task have been separated into Training Set, Development Test Set, and Test Set. Then a statistically significant number of experiments with neural network to get the accuracy of the prediction of the Test Set that happens when the accuracy of the Development Test Set is maximized have been conducted. The aim of the research is to learn whether this methodology can statistically detect any significant difference of the accuracy of prediction between the Test Set formed from days with interventions reported by the Czech Police and the randomly selected Test Set using the assumption that the neural network learns dependencies not affected by preventive interventions.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Mathematical Methods in Economics MME 2017
ISBN
978-80-7435-678-0
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
505-510
Název nakladatele
Gaudeamus, University of Hradec Králové
Místo vydání
Hradec Králové
Místo konání akce
Hradec Králové
Datum konání akce
1. 1. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000427151400086