Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Discovering Trends and Journeys in Knowledge-Based Human Resource Management: Big Data Smart Literature Review Based on Machine Learning Approach

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24310%2F23%3A00011275" target="_blank" >RIV/46747885:24310/23:00011275 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/10185055/keywords#keywords" target="_blank" >https://ieeexplore.ieee.org/document/10185055/keywords#keywords</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2023.3296140" target="_blank" >10.1109/ACCESS.2023.3296140</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Discovering Trends and Journeys in Knowledge-Based Human Resource Management: Big Data Smart Literature Review Based on Machine Learning Approach

  • Popis výsledku v původním jazyce

    The research interest of knowledge in human resource management (HRM) is significant. Bibliometric or systematic literature review studies capture the main areas and trends in the field of HRM. However, many HRM studies work only with a limited number of analyzed documents (systematic literature review) or go more in breadth than in depth of researched topics (bibliometric reviews). This smart literature review study is based on processing metadata to get results from 7,318 documents related to human resource management and knowledge, published between 1960 and 2021, retrieved from the Scopus database with research directions linked to knowledge and human resources and the current topic Covid-19 pandemic. Such a broad study has not yet been published in the field of knowledge and HRM. The study answers three research questions related to trends and innovative journeys in knowledge-based HRM. Descriptive and inferential statistics was used to capture basic trends in knowledge and HRM themes. Latent Dirichlet Allocation (LDA) was used for topic modelling with Gibbs sampling, which we use on a corpus of abstracts. Used method allowed us to identify latent topics which describe a more in-depth relationship between HRM and knowledge. We identified 13 topics related to HRM and knowledge research as the most relevant and showed directions and trends among the authors of HRM and knowledge management. The last part is devoted to the current topic of Covid-19, key areas identified in the literature and their impact on knowledge management from the perspective of HRM. During the analyzed period, the highest increase of research interest and research impact was recorded by two topics - Employee performance and Risk management. Our study maps the development of these and other topics and more deeply characterizes research in knowledge-based HRM during the pandemic. The results thus offer an up-to-date scientific map of this rapidly developing field and can be the basis for a broader discussion on the future direction of HRM.

  • Název v anglickém jazyce

    Discovering Trends and Journeys in Knowledge-Based Human Resource Management: Big Data Smart Literature Review Based on Machine Learning Approach

  • Popis výsledku anglicky

    The research interest of knowledge in human resource management (HRM) is significant. Bibliometric or systematic literature review studies capture the main areas and trends in the field of HRM. However, many HRM studies work only with a limited number of analyzed documents (systematic literature review) or go more in breadth than in depth of researched topics (bibliometric reviews). This smart literature review study is based on processing metadata to get results from 7,318 documents related to human resource management and knowledge, published between 1960 and 2021, retrieved from the Scopus database with research directions linked to knowledge and human resources and the current topic Covid-19 pandemic. Such a broad study has not yet been published in the field of knowledge and HRM. The study answers three research questions related to trends and innovative journeys in knowledge-based HRM. Descriptive and inferential statistics was used to capture basic trends in knowledge and HRM themes. Latent Dirichlet Allocation (LDA) was used for topic modelling with Gibbs sampling, which we use on a corpus of abstracts. Used method allowed us to identify latent topics which describe a more in-depth relationship between HRM and knowledge. We identified 13 topics related to HRM and knowledge research as the most relevant and showed directions and trends among the authors of HRM and knowledge management. The last part is devoted to the current topic of Covid-19, key areas identified in the literature and their impact on knowledge management from the perspective of HRM. During the analyzed period, the highest increase of research interest and research impact was recorded by two topics - Employee performance and Risk management. Our study maps the development of these and other topics and more deeply characterizes research in knowledge-based HRM during the pandemic. The results thus offer an up-to-date scientific map of this rapidly developing field and can be the basis for a broader discussion on the future direction of HRM.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

  • Svazek periodika

  • Číslo periodika v rámci svazku

    11

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    17

  • Strana od-do

    95567-95583

  • Kód UT WoS článku

    001064484000001

  • EID výsledku v databázi Scopus

    2-s2.0-85165252766