Supply chain research overview from the early eighties to Covid era – Big data approach based on Latent Dirichlet Allocation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24310%2F23%3A00011475" target="_blank" >RIV/46747885:24310/23:00011475 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0360835223005442" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0360835223005442</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cie.2023.109520" target="_blank" >10.1016/j.cie.2023.109520</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Supply chain research overview from the early eighties to Covid era – Big data approach based on Latent Dirichlet Allocation
Popis výsledku v původním jazyce
In recent years, supply chain research has grown at a tremendous pace. Many review papers use systematic literature reviews to describe longer-term trends and perspectives. However, many of these studies analyze a limited number of documents, which does not always guarantee representativeness of results. This paper presents a smart bibliometric literature review of supply chain research. The objectives are: (i) to identify supply chain research interest and research impact across subject areas; (ii) to capture trends of supply chain research in the last four decades; (iii) to identify research domains related to supply chain and development of these research domains over time; (iv) to explore the impact of COVID-19 on areas of supply chain research. Authors process 116,759 documents related to supply chain research, published between 1969 and 2021, retrieved from the Scopus database. After providing statistics regarding research interest and research impact, they use a corpus of abstracts to perform topic modeling. Using Latent Dirichlet Allocation (LDA) with Gibbs sampling, 13 research domains related to supply chain research are identified: Ecology; Food supply chain; IT support of supply chain; Retail-oriented supply chain; Risk and disruptive aspects of supply chain; Performance management; Value management and social aspect; Production; Sustainability & development; Models & optimization; Effective inventory management; Supply chain management systems; Supplier and logistic analytics. We also present the individual areas of supply chain research during COVID-19 pandemic.
Název v anglickém jazyce
Supply chain research overview from the early eighties to Covid era – Big data approach based on Latent Dirichlet Allocation
Popis výsledku anglicky
In recent years, supply chain research has grown at a tremendous pace. Many review papers use systematic literature reviews to describe longer-term trends and perspectives. However, many of these studies analyze a limited number of documents, which does not always guarantee representativeness of results. This paper presents a smart bibliometric literature review of supply chain research. The objectives are: (i) to identify supply chain research interest and research impact across subject areas; (ii) to capture trends of supply chain research in the last four decades; (iii) to identify research domains related to supply chain and development of these research domains over time; (iv) to explore the impact of COVID-19 on areas of supply chain research. Authors process 116,759 documents related to supply chain research, published between 1969 and 2021, retrieved from the Scopus database. After providing statistics regarding research interest and research impact, they use a corpus of abstracts to perform topic modeling. Using Latent Dirichlet Allocation (LDA) with Gibbs sampling, 13 research domains related to supply chain research are identified: Ecology; Food supply chain; IT support of supply chain; Retail-oriented supply chain; Risk and disruptive aspects of supply chain; Performance management; Value management and social aspect; Production; Sustainability & development; Models & optimization; Effective inventory management; Supply chain management systems; Supplier and logistic analytics. We also present the individual areas of supply chain research during COVID-19 pandemic.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computers & Industrial Engineering
ISSN
0360-8352
e-ISSN
—
Svazek periodika
183
Číslo periodika v rámci svazku
September 2023
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
23
Strana od-do
1-23
Kód UT WoS článku
001097353300001
EID výsledku v databázi Scopus
2-s2.0-85168255022