Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Navigating the human element: Unveiling insights into workforce dynamics in supply chain automation through smart bibliometric analysis

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24310%2F24%3A00013414" target="_blank" >RIV/46747885:24310/24:00013414 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.15240/tul/001/2024-5-011" target="_blank" >https://doi.org/10.15240/tul/001/2024-5-011</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.15240/tul/001/2024-5-011" target="_blank" >10.15240/tul/001/2024-5-011</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Navigating the human element: Unveiling insights into workforce dynamics in supply chain automation through smart bibliometric analysis

  • Popis výsledku v původním jazyce

    This study aims to create a scientific map of supply chain automation research focusing on human resources management, which will be applicable in practice and widen the knowledge in theory. It introduces the scientific articles, subject areas and dominant research topics related to supply chain automation, focusing on human resources management. In this study, 509 publications retrieved from the Scopus database were analyzed by a novel methodological approach - a smart bibliometric literature review using Latent Dirichlet Allocation with Gibbs sampling. The study processes scientific articles with automated tools. It uses a novel machine-learning-based methodological approach to identify latent topics from many scientific articles. This approach creates the possibility of comprehensively capturing the areas of supply chain automation focusing on human resources management and offers a science map of this rapidly developing area. This kind of smart literature review based on a machine learning approach can process a large number of documents. Simultaneously, it can find topics that a standard bibliometric analysis would not show. The authors of the study identified six topics related to supply chain automation, focusing on human resources management, specifically (1) network design, (2) sustainable performance and practices, (3) efficient production, (4) technology-based innovations and changes, (5) management of business and operations, and (6) global company strategies. The study‘s results offer key insights for decision-makers, illuminating essential themes related to automation integration in the supply chain and the vital role of human resources in this transformation. The limitations of this study are the qualitative level of results provided by the machine learning approach, which does not contain manual analysis of documents and the subjectivity of the expert process to set the appropriate number of topics.

  • Název v anglickém jazyce

    Navigating the human element: Unveiling insights into workforce dynamics in supply chain automation through smart bibliometric analysis

  • Popis výsledku anglicky

    This study aims to create a scientific map of supply chain automation research focusing on human resources management, which will be applicable in practice and widen the knowledge in theory. It introduces the scientific articles, subject areas and dominant research topics related to supply chain automation, focusing on human resources management. In this study, 509 publications retrieved from the Scopus database were analyzed by a novel methodological approach - a smart bibliometric literature review using Latent Dirichlet Allocation with Gibbs sampling. The study processes scientific articles with automated tools. It uses a novel machine-learning-based methodological approach to identify latent topics from many scientific articles. This approach creates the possibility of comprehensively capturing the areas of supply chain automation focusing on human resources management and offers a science map of this rapidly developing area. This kind of smart literature review based on a machine learning approach can process a large number of documents. Simultaneously, it can find topics that a standard bibliometric analysis would not show. The authors of the study identified six topics related to supply chain automation, focusing on human resources management, specifically (1) network design, (2) sustainable performance and practices, (3) efficient production, (4) technology-based innovations and changes, (5) management of business and operations, and (6) global company strategies. The study‘s results offer key insights for decision-makers, illuminating essential themes related to automation integration in the supply chain and the vital role of human resources in this transformation. The limitations of this study are the qualitative level of results provided by the machine learning approach, which does not contain manual analysis of documents and the subjectivity of the expert process to set the appropriate number of topics.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    50204 - Business and management

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    E & M EKONOMIE A MANAGEMENT

  • ISSN

    1212-3609

  • e-ISSN

  • Svazek periodika

    27

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    16

  • Strana od-do

    72-87

  • Kód UT WoS článku

    001312806500005

  • EID výsledku v databázi Scopus

    2-s2.0-85206350727