Quadratic Spline Wavelets with Short Support Satisfying Homogeneous Boundary Conditions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F18%3A00005664" target="_blank" >RIV/46747885:24510/18:00005664 - isvavai.cz</a>
Výsledek na webu
<a href="http://etna.mcs.kent.edu/volumes/2011-2020/vol48/abstract.php?vol=48&pages=15-39" target="_blank" >http://etna.mcs.kent.edu/volumes/2011-2020/vol48/abstract.php?vol=48&pages=15-39</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1553/etna_vol48s15" target="_blank" >10.1553/etna_vol48s15</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Quadratic Spline Wavelets with Short Support Satisfying Homogeneous Boundary Conditions
Popis výsledku v původním jazyce
In this paper, we construct a new quadratic spline-wavelet basis on the interval and on the unit square satisfying homogeneous Dirichlet boundary conditions of the first order. The wavelets have one vanishing moment and the shortest support among quadratic spline wavelets with at least one vanishing moment adapted to the same type of boundary conditions. The stiffness matrices arising from the discretization of the second-order elliptic problems using the constructed wavelet basis have uniformly bounded condition numbers, and the condition numbers are small. We present some quantitative properties of the constructed basis. We provide numerical examples to show that the Galerkin method and the adaptive wavelet method using our wavelet basis require fewer iterations than methods with other quadratic spline wavelet bases. Moreover, due to the small support of the wavelets, when using these methods with the new wavelet basis, the system matrix is sparser, and thus one iteration requires a smaller number of floating point operations than for other quadratic spline wavelet bases.
Název v anglickém jazyce
Quadratic Spline Wavelets with Short Support Satisfying Homogeneous Boundary Conditions
Popis výsledku anglicky
In this paper, we construct a new quadratic spline-wavelet basis on the interval and on the unit square satisfying homogeneous Dirichlet boundary conditions of the first order. The wavelets have one vanishing moment and the shortest support among quadratic spline wavelets with at least one vanishing moment adapted to the same type of boundary conditions. The stiffness matrices arising from the discretization of the second-order elliptic problems using the constructed wavelet basis have uniformly bounded condition numbers, and the condition numbers are small. We present some quantitative properties of the constructed basis. We provide numerical examples to show that the Galerkin method and the adaptive wavelet method using our wavelet basis require fewer iterations than methods with other quadratic spline wavelet bases. Moreover, due to the small support of the wavelets, when using these methods with the new wavelet basis, the system matrix is sparser, and thus one iteration requires a smaller number of floating point operations than for other quadratic spline wavelet bases.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS
ISSN
1068-9613
e-ISSN
—
Svazek periodika
48
Číslo periodika v rámci svazku
neuvedeno
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
25
Strana od-do
15-39
Kód UT WoS článku
000459295400002
EID výsledku v databázi Scopus
2-s2.0-85045282491