DG framework for pricing European options under one-factor stochastic volatility models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F18%3A00006299" target="_blank" >RIV/46747885:24510/18:00006299 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27510/18:10240129
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.cam.2018.05.064" target="_blank" >http://dx.doi.org/10.1016/j.cam.2018.05.064</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cam.2018.05.064" target="_blank" >10.1016/j.cam.2018.05.064</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
DG framework for pricing European options under one-factor stochastic volatility models
Popis výsledku v původním jazyce
The modern theory of option pricing is based on models introduced almost 50 years ago. These models, however, are not able to capture real market behaviour sufficiently well. One line of extensions consists of introducing an additional variable into the model, the so-called stochastic volatility. Since such models lead to the (semi) closed-form solution only rarely, some form of a numerical approximation can be essential. In this paper we study a general one-factor stochastic volatility model for the pricing of European options. A standard mathematical approach to this problem leads to a degenerate partial differential equation completed by boundary and terminal conditions. We formulate this problem in a variational sense and prove the existence and the uniqueness of a weak solution. Further, a robust numerical procedure based on the discontinuous Galerkin approach is proposed to improve the numerical valuation process. The performance of the procedure is accompanied with theoretical results and documented using reference experiments with the emphasis on investigation of the behaviour of option values with respect to the different mesh sizes as well as polynomial orders of approximation.
Název v anglickém jazyce
DG framework for pricing European options under one-factor stochastic volatility models
Popis výsledku anglicky
The modern theory of option pricing is based on models introduced almost 50 years ago. These models, however, are not able to capture real market behaviour sufficiently well. One line of extensions consists of introducing an additional variable into the model, the so-called stochastic volatility. Since such models lead to the (semi) closed-form solution only rarely, some form of a numerical approximation can be essential. In this paper we study a general one-factor stochastic volatility model for the pricing of European options. A standard mathematical approach to this problem leads to a degenerate partial differential equation completed by boundary and terminal conditions. We formulate this problem in a variational sense and prove the existence and the uniqueness of a weak solution. Further, a robust numerical procedure based on the discontinuous Galerkin approach is proposed to improve the numerical valuation process. The performance of the procedure is accompanied with theoretical results and documented using reference experiments with the emphasis on investigation of the behaviour of option values with respect to the different mesh sizes as well as polynomial orders of approximation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-09541S" target="_blank" >GA16-09541S: Robustní numerická schémata pro oceňování vybraných opcí za různých tržních podmínek</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Computational and Applied Mathematics
ISSN
0377-0427
e-ISSN
—
Svazek periodika
344
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
16
Strana od-do
585-600
Kód UT WoS článku
000440394900039
EID výsledku v databázi Scopus
2-s2.0-85048872281