Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Confidence intervals based on L-moments for quantiles of the GP and GEV distributions with application to market-opening asset prices data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F21%3A00008475" target="_blank" >RIV/46747885:24510/21:00008475 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.tandfonline.com/doi/abs/10.1080/02664763.2020.1757046" target="_blank" >https://www.tandfonline.com/doi/abs/10.1080/02664763.2020.1757046</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/02664763.2020.1757046" target="_blank" >10.1080/02664763.2020.1757046</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Confidence intervals based on L-moments for quantiles of the GP and GEV distributions with application to market-opening asset prices data

  • Popis výsledku v původním jazyce

    In a ground-breaking paper published in 1990 by the Journal of the Royal Statistical Society, J.R.M. Hosking defined the L-moment of a random variable as an expectation of certain linear combinations of order statistics. L-moments are an alternative to conventional moments and recently they have been used often in inferential statistics. L-moments have several advantages over the conventional moments, including robustness to the presence of outliers, which may lead to more accurate estimates in some cases as the characteristics of distributions. In this contribution, asymptotic theory and L-moments are used to derive confidence intervals of the population parameters and quantiles of the three-parametric generalized Pareto and extreme-value distributions. Computer simulations are performed to determine the performance of confidence intervals for the population quantiles based on L-moments and to compare them to those obtained by traditional estimation techniques. The results obtained show that they perform well in comparison to the moments and maximum likelihood methods when the interest is in higher quantiles, or even best. L-moments are especially recommended when the tail of the distribution is rather heavier and the sample size is small. The derived intervals are applied to real economic data, and specifically to market-opening asset prices.

  • Název v anglickém jazyce

    Confidence intervals based on L-moments for quantiles of the GP and GEV distributions with application to market-opening asset prices data

  • Popis výsledku anglicky

    In a ground-breaking paper published in 1990 by the Journal of the Royal Statistical Society, J.R.M. Hosking defined the L-moment of a random variable as an expectation of certain linear combinations of order statistics. L-moments are an alternative to conventional moments and recently they have been used often in inferential statistics. L-moments have several advantages over the conventional moments, including robustness to the presence of outliers, which may lead to more accurate estimates in some cases as the characteristics of distributions. In this contribution, asymptotic theory and L-moments are used to derive confidence intervals of the population parameters and quantiles of the three-parametric generalized Pareto and extreme-value distributions. Computer simulations are performed to determine the performance of confidence intervals for the population quantiles based on L-moments and to compare them to those obtained by traditional estimation techniques. The results obtained show that they perform well in comparison to the moments and maximum likelihood methods when the interest is in higher quantiles, or even best. L-moments are especially recommended when the tail of the distribution is rather heavier and the sample size is small. The derived intervals are applied to real economic data, and specifically to market-opening asset prices.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-01137S" target="_blank" >GA18-01137S: Náhodné procesy regresních kvantilů v analýze finančního rizika</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Applied Statistics

  • ISSN

    0266-4763

  • e-ISSN

  • Svazek periodika

  • Číslo periodika v rámci svazku

    7

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    28

  • Strana od-do

  • Kód UT WoS článku

    000532048300001

  • EID výsledku v databázi Scopus

    2-s2.0-85097559363