Asymptotic orderings and approximations of the Master kinetic equation for large hard spheres systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19240%2F17%3AA0000019" target="_blank" >RIV/47813059:19240/17:A0000019 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0375960117302141?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0375960117302141?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.physleta.2017.03.001" target="_blank" >10.1016/j.physleta.2017.03.001</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Asymptotic orderings and approximations of the Master kinetic equation for large hard spheres systems
Popis výsledku v původním jazyce
In this paper the problem is posed of determining the physically-meaningful asymptotic orderings holding for the statistical description of a large N-body system of hard spheres, i.e., formed by N equivalent to 1/epsilon >> 1 particles, which are allowed to undergo instantaneous and purely elastic unary, binary or multiple collisions. Starting point is the axiomatic treatment recently developed [Tessarotto et al., 2013-2016] and the related discovery of an exact kinetic equation realized by Master equation which advances in time the 1-body probability density function (PDF) for such a system. As shown in the paper the task involves introducing appropriate asymptotic orderings in terms of epsilon for all the physically-relevant parameters. The goal is that of identifying the relevant physically-meaningful asymptotic approximations applicable for the Master kinetic equation, together with their possible relationships with the Boltzmann and Enskog kinetic equations, and holding in appropriate asymptotic regimes. These correspond either to dilute or dense systems and are formed either by small-size or finite-size identical hard spheres, the distinction between the various cases depending on suitable asymptotic orderings in terms of epsilon.
Název v anglickém jazyce
Asymptotic orderings and approximations of the Master kinetic equation for large hard spheres systems
Popis výsledku anglicky
In this paper the problem is posed of determining the physically-meaningful asymptotic orderings holding for the statistical description of a large N-body system of hard spheres, i.e., formed by N equivalent to 1/epsilon >> 1 particles, which are allowed to undergo instantaneous and purely elastic unary, binary or multiple collisions. Starting point is the axiomatic treatment recently developed [Tessarotto et al., 2013-2016] and the related discovery of an exact kinetic equation realized by Master equation which advances in time the 1-body probability density function (PDF) for such a system. As shown in the paper the task involves introducing appropriate asymptotic orderings in terms of epsilon for all the physically-relevant parameters. The goal is that of identifying the relevant physically-meaningful asymptotic approximations applicable for the Master kinetic equation, together with their possible relationships with the Boltzmann and Enskog kinetic equations, and holding in appropriate asymptotic regimes. These correspond either to dilute or dense systems and are formed either by small-size or finite-size identical hard spheres, the distinction between the various cases depending on suitable asymptotic orderings in terms of epsilon.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physics Letters A
ISSN
0375-9601
e-ISSN
—
Svazek periodika
381
Číslo periodika v rámci svazku
17
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
6
Strana od-do
1484-1489
Kód UT WoS článku
000400215500003
EID výsledku v databázi Scopus
2-s2.0-85017144495