Higher-order mechanical systems with constraints
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F00%3A00000042" target="_blank" >RIV/47813059:19610/00:00000042 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Higher-order mechanical systems with constraints
Popis výsledku v původním jazyce
A general mathematical theory covering higher-order mechanical systems subject to constraints of arbitrary order is presented, including higher-order holonomic systems as a particular case. Within differential geometric setting on higher-order jet bundles, the concept of a mechanical system is introduced to be a class of 2-forms equivalent with a dynamical form. Dynamics are then represented by means of corresponding exterior differential systems. Higher-order constraint structure on a fibered manifoldis defined to be a submanifold endowed with a distribution (canonical distribution, higher-order Chetaev bundle). With help of a constraint structure a constraint force is naturally introduced. Higher-order mechanical systems subject to different kinds ofhigher-order constraints are then geometrically characterized and their dynamics are studied from a geometrical point of view. Regular and Lagrangian systems appear as important particular cases within the general scheme.
Název v anglickém jazyce
Higher-order mechanical systems with constraints
Popis výsledku anglicky
A general mathematical theory covering higher-order mechanical systems subject to constraints of arbitrary order is presented, including higher-order holonomic systems as a particular case. Within differential geometric setting on higher-order jet bundles, the concept of a mechanical system is introduced to be a class of 2-forms equivalent with a dynamical form. Dynamics are then represented by means of corresponding exterior differential systems. Higher-order constraint structure on a fibered manifoldis defined to be a submanifold endowed with a distribution (canonical distribution, higher-order Chetaev bundle). With help of a constraint structure a constraint force is naturally introduced. Higher-order mechanical systems subject to different kinds ofhigher-order constraints are then geometrically characterized and their dynamics are studied from a geometrical point of view. Regular and Lagrangian systems appear as important particular cases within the general scheme.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2000
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Mathematical Physics
ISSN
ISSN0022-2488
e-ISSN
—
Svazek periodika
41
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
21
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—