Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Hamiltonian field theory revisited: A geometric approach to regularity

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F01%3A00000068" target="_blank" >RIV/47813059:19610/01:00000068 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Hamiltonian field theory revisited: A geometric approach to regularity

  • Popis výsledku v původním jazyce

    A reformulation and generalization of basic concepts such as Hamiltonian system, Hamilton equations, regularity, and Legendre transformation for variational systems on fibered manifolds, is presented. The theory is based on the concept of Lepagean (n+1)-form (where n is the dimension of the base manifold). Contrary to the standard approach, where Hamiltonian theory is related to a single Lagrangian, here a Hamiltonian system is associated with an Euler-Lagrange form, i.e., with the class of all equivalent Lagrangians. Hamilton equations are introduced to be equations for integral sections of an exterior differential system. Relations between extremals and solutions of Hamilton equations are studied in detail. New regularity conditions and Legendre transformation formulas are found a procedure of regularization of variational problems is proposed.

  • Název v anglickém jazyce

    Hamiltonian field theory revisited: A geometric approach to regularity

  • Popis výsledku anglicky

    A reformulation and generalization of basic concepts such as Hamiltonian system, Hamilton equations, regularity, and Legendre transformation for variational systems on fibered manifolds, is presented. The theory is based on the concept of Lepagean (n+1)-form (where n is the dimension of the base manifold). Contrary to the standard approach, where Hamiltonian theory is related to a single Lagrangian, here a Hamiltonian system is associated with an Euler-Lagrange form, i.e., with the class of all equivalent Lagrangians. Hamilton equations are introduced to be equations for integral sections of an exterior differential system. Relations between extremals and solutions of Hamilton equations are studied in detail. New regularity conditions and Legendre transformation formulas are found a procedure of regularization of variational problems is proposed.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2001

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Steps in Differential Geometry

  • ISBN

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    21

  • Strana od-do

    187-207

  • Název nakladatele

    Debrecen University

  • Místo vydání

    Debrecen

  • Místo konání akce

    Debrecen

  • Datum konání akce

    1. 1. 2000

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku