Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Hamiltonian field theory

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F02%3A00000084" target="_blank" >RIV/47813059:19610/02:00000084 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Hamiltonian field theory

  • Popis výsledku v původním jazyce

    In this paper, a general Hamiltonian theory for Lagrangian systems on fibred manifolds is proposed. The concept of a Lepagean (n+1)-form is defined, generalizing Krupka's concept of a Lepagean n-form. Lepagean (n+1)-forms are used to study Lagrangian andHamiltonian systems. Innovations and new results concern the following: a Lagrangian system is considered as an equivalence class of local Lagrangians; a Hamiltonian system is associated with an Euler-Lagrange form (not with a particular Lagrangian); Hamilton equations are based upon a Lepagean (n+1)-form, and cover Hamilton-De Donder equations as a special case. First-order Hamiltonian systems, namely those carying higher-degree contact components of the corresponding Lepagean forms, are studied in detail. The presented geometric setting leads to a new understanding of the concepts of regularity and Legendre transformation in the calculus of variations, relating them directly to the properties of the arising exterior differential syste

  • Název v anglickém jazyce

    Hamiltonian field theory

  • Popis výsledku anglicky

    In this paper, a general Hamiltonian theory for Lagrangian systems on fibred manifolds is proposed. The concept of a Lepagean (n+1)-form is defined, generalizing Krupka's concept of a Lepagean n-form. Lepagean (n+1)-forms are used to study Lagrangian andHamiltonian systems. Innovations and new results concern the following: a Lagrangian system is considered as an equivalence class of local Lagrangians; a Hamiltonian system is associated with an Euler-Lagrange form (not with a particular Lagrangian); Hamilton equations are based upon a Lepagean (n+1)-form, and cover Hamilton-De Donder equations as a special case. First-order Hamiltonian systems, namely those carying higher-degree contact components of the corresponding Lepagean forms, are studied in detail. The presented geometric setting leads to a new understanding of the concepts of regularity and Legendre transformation in the calculus of variations, relating them directly to the properties of the arising exterior differential syste

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA201%2F00%2F0724" target="_blank" >GA201/00/0724: Geometrická analýza</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2002

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Geometry and Physics

  • ISSN

    ISSN0393-0440

  • e-ISSN

  • Svazek periodika

    43

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    IT - Italská republika

  • Počet stran výsledku

    40

  • Strana od-do

    93-132

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus